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Introduction

» Localization of gauge theories on spheres or other compact
manifolds has been successfully applied to many situations.

» Examples:
N =4 and N =2 SYM in 4d Pestun
N =2 and higher CS/SYM in 3d Kapustin, Willett, Yakov; Jafferis
N =1,2S5YM in 5d: Killén, Zabzine; Killén, Qiu, Zabzine; Kim, Kim
(2,2) SYM in 2d: Benini and Cremonisi; Daroud et. al.
N =26dand N =1 7d SYM JAM, Zabzine

» Different techniques used for the different situations.

> Odd dimensional spheres have vector fields that act freely.
» Even dimensional spheres have vector fields with fixed points
> At the end, the results are very similar

> Is there a more uniform way of doing this for general d?

> Is it possible to continue the value of d to situations where a direct
localization procedure is not known?



Outline

» Review and extend a generalized version of Pestun’s dimensional
reduction and localization of MSYM (and its mass deformations) on
round spheres Zabzine & JAM; Gorantis, Naseer, JAM.

» One loop determinants for general d JAM; Gorantis, Naseer, JAM.

> Application: Analytic continuation of mass deformed MSYM with 4
SUSYs from d = 3 to d = 4 JAM; Gorantis, Naseer, JAM.

» Summary and open questions



Dimensional reduction of MSYM
» 10-dimensional flat-space action: Brink, Scherk & Schwarz
1
S= ——z/d“’xTr (AFunFMN —wpw) |
&io
» Action is invariant under the supersymmetry transformations
ScAm = € TyapV?, M=0,...9
S W = LrMNespyy P a,f=1,...16

(6%

€*: constant bosonic real chiral spinors; (16 ind. SUSYs)

» Dimensionally reduce to d-dimensional Euclidean gauge theory.
Ay, p=1...,d or=A, I=0d+1,...9.
» Derivatives along compactified directions are zero:
Fur=1[Du, 1] Fu=1[¢1,¢4].

» Scalars transform under vector rep. of SO(1,9 — d) R-symmetry in
flat Euclidean space. ¢g has wrong-sign kinetic term.

» d-dimensional coupling: g2\, = g%/ Vi0—d-



The theory on spheres giau ‘00, zabzine and M

Put theory on S? with radius r.

v

v

d = 4: MSYM is superconformal, = conformal mass term

5¢¢:g2i d*xv/—g ( Tr¢,¢’>

YM

v

d # 4: not superconformal, but we include a similar term:

Spp = gf d9x\/— ( Tr¢7 0] ) , [/ is summed over]

YM

A is the analog of the dimension for ¢;.

v

Need further terms to preserve the supersymmetry.



Conformal Killing spinors

v

No covariantly constant spinors on the sphere

v

There are conformal Killing spinors (CKS)

1

VMG = I_Hg’ Vﬂg = _ﬁ

lue.

€. has opposite 10D chirality to €“.
32 independent solutions for d < 10:
1

Reduce to 16 spinors by further imposing (3 = 5.)

v

v

€ = phe, FPA= A"  AA=1
d+#4alsoneed \T = A =— A=T5°r°

» This construction can be used for spheres up to d = 7.



Modified SUSY Transformations
» SUSY transfs. need to be modified

0 AM = elyV¥
SV = AMMMFuwe+ SI0M6,V, e
4(d -3 4
O[A:¥, A:8,97O7 O[,':g, I:d+1~7
> Set Ap = aa, A; =2(d —2)/d.
» Complete maximally SUSY action:
s — d*x/=gTr | (3 Fun FM" — wpw
gYM
2(d -3 d— d 4
+ ( )TquS +( )Trqbq’), ( )\Il/\lll

f;(d — 4)Tr(6"[", ¢>91)} :
> Preserves 16 susys but R-symmetry explicitly broken (d # 4,7):

SO(1,9 — d) — SO(1,2) x SO(7 — d)



d <5, can reduce to 8 supersymmetries
» If d <5, 6=+ ¥ ¢ +x
’l/} — +r6789w X = 7r6789x

» Vector multiplet: A,, ¢, ¢/, | =0,d+1...5
» Hypermultiplet: y, ¢/, | =6...9

» Supersymmetry is less restrictive = hypermultiplet mass m

2(d -2 diocymr
( )+ I

d d
JAVERES 2<mr(mr+im)+d(d_2)> I=6...
d 4
o = +1(-1) 1=6,7(8,9)

%Tr\ll/\\lf = <(d2_r4)Tr1/1/\1/1 —imTr x/\x>

Cubic term is also modified.



d < 3, can reduce to 4 supersymmetries

v

v

If d <3, €=+ =4 ) - ' + xV; y = x@ + )

a
@

X
X
¥

1
2r

W =

):
):
):

+r6789w/ wl _ +r4589'l/)/

r6789x(1) X(l) _ _r4589X(1)
r6789X(2) X(Q) _ +r4589X(2)
r6789X(3) X(3) _ _r4589X(3)

Vector multiplet: A, ¢/, ¢/, | =0,d +1...3
Chiral multiplets: x(©), ¢2¢t2 4+ jp2t+3 1 =123
Susy less restrictive: Chiral multiplet masses my

Supersymmetry requires

(d74)+i(m1+mg+m3):0.

The my, are “real” masses.



A Constraint for real MASSES Gorantis, Naseer and JAM

Consider flat space:

» In 3d A/ = 2 susy, real masses appear in the superalgebra
{Qa, s} =ichy Pu+imRens

» MSYM has a term in the superpotential Tr(Q:Q; Qx)el.
Acting with {Q,, Qg} on this gives

~(m1+m2—|—m3).

— Supersymmetry requires the sum to be zero.



Localization
> Localizing the (off-shell) action = Modify the path integral to

/che*S tQv

Q is a fermionic symmetry generator. QV positive definite.
» If Q*V =0 then dZ/dt =0
» Take t — oo, fields localize onto QV = 0.

z - Z Ddge > Dety
kefixed loci

» For Q choose 4., while
V= /ddxx/—gww.

Bosonic part of 6.V

0V

= / d¥x/—g Tr(6. V. V).

bos



Localization (continued)

> Fixed locus: (zero instanton sector)

VH¢0 =0, ¢ =0
» Substitute the fixed locus into the action,
1 d—1)(d -3
Sp = = [dx/-g {d-1)d-3) )g )
Eym r
d—4 —1 _
_r (d )(d 3)SdTra2

2
8vm

40

Tr(poo)

o= r¢g

» Does not change when breaking the susy's, since only the vector

multiplet field ¢g contributes.



One-loop determinants

» Compute quadratic fluctuations about fixed point locus

» Generalization of 5D for 8 susy’s (Kim & Kim) and 3D for 4 susy's
(Kapustin, Willet & Yaakov)

» Strategy is to find sets of basis vectors for bosons and fermions

» Directly doing 16 susy's is harder this way (But we can find the
results indirectly)



One—|OOp determinants (8 SusyS) (JAM; Gorantis, JAM, & Naseer)
Vector multiplet:

Dets _T(k+d—2)
o k I'k+1 I'(d 2 k+d—2 T(k+1)I(d—2)
Dets., U | |( + (v, ¢o)) kl |0( + + iy, ¢o)) T
Hypermultiplet (= mr):
Dety =1 d—2\ (, . d—2\| e
Dety IWI I:IO i) tint =5 ) k=it o) —int ==

» For d <5 we can combine a vector multiplet with an adjoint hyper
with mass u = i(d — 4)/2 to give 16 supercharges.

> For general d (after shifting some k) the combined determinant
factor is (including the Vandermonde determinant)

I(k+d—3)

~,0)? TDT@—3)
I (a7 )

~>0 k=0

> Analytically continuing to d > 5 agrees with d =6 and d =7
cases. JAM, Zabzine



One—|OOp determinants (4 SUSYS) (JAM; Gorantis, JAM, & Naseer)

Adjoint chiral multiplet with mass parameter . = mr

I(k+d—1)
) Fk+1)T (d—1)

Detf,c —ip+ 3
Dety . HH k+l (.0 >+lu+d22)

Vector multiplet:

k+d—1)

(
Dety [Tie i (k—i{y, o)) mir@-1
- H +d—1)

(
Deto S0 I okt d=1ily, o)) i s




Mass deformed maximal SYM for SU(N)

» Perturbative partition function

2.d—4
N ‘275‘1 4 Tro?
[[doi[[(r.oye  &m fre = mer
i ¥
M(k+d—1)
3 F(k+1)(d—1)

Hﬁ (k—ilv,0) H fl% Y—ipe+ 9)

e | (kHd =14 % 7)) >+Iue+ 2)

» What happens when we analytically continue to d = 47 Not known
how to localize but there is an available supergroup: Osp(1|4)

=1

N =4 Mass corr.
N 8.,\.2 o2 co 3
/Hda, e sm H(a,- —0;)? HHHZk(U; — 0, 1)
i i<j i#j k=0 0=1

(k+ )(k+2)

Zi(o, pe) = [(k—lo'—lluf + 2)(k+,g+1)]

(k+io+ipe+1)(k—io +2)



Mass deformed maximal SYM in d = 4

v

Assume N > 1: evaluate by saddle point.

v

At strong coupling the saddle point in general has |o;i—0j| > 1

v

The correction term is divergent and needs to be regularized

3 oo .
1
DD 0g(Zu(o—0", w)eex) ~ —5(0—0") log(o 0"V (1 + pat-113)

j=1 k=0

1 i
+7 log(0 —0") (i +1z+113) — g log(o—0") (ui+p2+is3)

v

Supersymmetry requires

d—4 .
—5— Tilmtpetus) =0

= (0—0')?log(c—0')? term is absent.



MaSS deformed MSYM in d = 4 (JAM; Gorantis, JAM, & Naseer)

» Situation similar to N/ = 2* Russo & Zarembo; Chen, Gordon & Zarembo
» Saddle point equation at strong coupling is approximately:

1672 oL () — (B +3))
o=24do'p(a")

A o—o’

Saddle point equation for a Gaussian matrix model

» Free energy for N =4: F ~ —N; log A\

N2
F =~ > (1+ (M1+M2+N3)—*(M1+M2+M3)>

x log ()\ (1 + = (u1+u2+u3) (u1+uz+ua))>

Use p3+p3+p3 = —3papiops
Expand [dropping quadratic and cubic terms (scheme dep.)]

i
— (T 5+ 13 paps

oF 2

%

1
- (G i -

1 1
—og (it ia+p3)’ = J(mpapis)’ + O(M)) ,



Mass deformed maximal SYM in d = 4

Comments:
» Caveat: N = 1* dimensionally reduced to 3D has complex masses
(mass terms in the superpotential). Can we replace mg with m¢?
» Can't directly compare to a numerical 2016 SUGRA calculation of
Bobev, Elvang, Kol, Olson & Pufu. To simplify the analysis they choose
2 = p3 =0 or ug = pp = p3. Neither case has pg+px+ps = 0.
Evidence:
» Terms that appear in the free energy are consistent with the
symmetry analysis of Bobev et. al.: Only combinations of
(1) + (p2fi2)" + (usiiz)", papizps, or fixfizfiz can appear.
» Take ;| — 0o = reduces to N' =1 pure SYM. One can read off
the holomorphic S-function with |p;| acting as a cutoff. v

» F is complex — Not surprising as N’ = 1* on S* is not reflection
positive. Festuccia & Seiberg



Summary

> We have given a uniform description for putting MSYM and its mass
deformed cousins on S9.

» Continuing 4 SUSY case to 4d leads to a possible form for A/ = 1*
that passes several tests.

Some questions

» Can we find an analytic continuation to study 4d A/ =1
superconformal theories? Free energy is scheme dependent

» Are there more general index theorems to derive the determinant
factors directly?

» Can we analytically continue nonperturbative contributions?



Cnacu6o



Other stuff



Alternative 2D vector multiplet Lagrangian

» In 2 dimensions we can choose a different modification of the flat
space Lagrangian.

> (2,2) vector multiplet [AM,¢50,¢3,¢]:
6ctp = 3TN Py e+ G116,V €

M,N=0...3, ,J=0,3 a3=2 ap=0

> The vector multiplet Lagrangian is modified to

Lo = S T[3FmF™ — 6By + ST — 2 Fiog]
Eym r r
2
= %TI‘[ <F12 — ¢3> + Dp,d)/DH(bl + %[d)la ¢J][¢Ia ¢J] - WM)}
8ym r

This is the Q-exact Lagrangian

» No change in chiral multiplet Lagrangian



One-loop determinants (8 SUSY5)

> Instead of index theorems we will generalize Kim & Kim for 8 susy's
and Kapustin, Willet & Yaakov for 4 susy's

» Directly doing 16 susy's is harder this way
> In this talk we only consider mass deformations of maximal SYM
» Fluctuations about fixed point locus (Bosons)

oo = A ON Ay~ A OlAT 6] M=1..5

O = —03V? + s +2B(d — 3)eT " "€V,

¥ d—1)4;,
'Y/\I\”/I/:4BQ<( O)M :’;)J)

i

Los(p) = Y [0 (=97 + B(d = 2+ 2in)?) &5 — (6%, 611l6%, 1]

i=a,b
—48(1 — 2ip) pav"'V,op w=mr

L2 = Lo7 (1) + Log (—p).



One-loop determinants (8 SUSY5)

» Fermion fluctuations
£ = (6¥w) — 2
iy d—
- %(d = 3)8 (" Ae) (6rTgges) + Tl ($A).

(d —3)Bv" (qproﬁ;,/\w) e (wr"Dow)

Lt = (xVx) + (xroDox) - %5 (efm/\E) (Xrormmx)

+ 2i,uﬁv’\7 (XI_OI:NAx) .



One-loop determinants (8 SUSY5)

Following Kim and Kim we introduce basis vectors for the vm bosons:
A}rﬂ = vy Ym+ 'V Ve
Aoy = M 5" NV, Y+ PV 5 Vi
A = el ' TV, Y
Afy = el "' TV, Yy

Vivg =1 ViV, Yk =2imBY),
(OA)}\;,:4ﬂ2[k(k+d—1)+(d_1)]AL_45( >A2
(OA)% = —43°2(d — 1)k(k + d — 1) A}, + 45°k(k + d — 1) A%

OMly =487 [k(k+d = 1) + (d = 2)° Ay + ie(d = 3)mAf |, 1.0 =34
eigenvalues:

43K, k>2 m#+k and  48%(k+d—1)>

45> [k(k+d—1)+(d—2)2j:(d—3)m]. (+) m#+k (=) m# —k



One-loop determinants (8 SUSY5)

Basis spinors for vm fermions

M =in, 7= it vy, v

For k > 1, m # k determinants:

4 k(k+d—1), 48° [k(k+d—1)+(d —2)> + m(d — 3)]
For k > 0, m = k: eigenvalues

2iB(k+d—1), 2i(k+d—2)

Detr _ 1T Ttk + (5. 60) D(kde(k+d 2+ (8, go)) P4+

Det
b.v BEroots k=1

where we have included the contribution of the constant bosonic field ¢q
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