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Introduction

@ Integrable hierarchies='solvable’ systems with infinitely many
variables (e.g., t = {t1,t2,...})

@ Dispersionless integrable hierarchies =quasi-classical limits of
certain integrable hierarchies.

@ N-variable reduction: solution depend on co-many variables t
only through N functions,
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DKP

@ The DKP hierarchy is one of the integrable hierarchies
introduced by M.Jimbo and T.Miwa in 1983. It was
subsequently rediscovered and came to be also known as

@ the coupled KP hierarchy [R.Hirota,Y.Ohta (1991)]
e the Pfaff lattice [M.Adler and others (1999-2002),
S.Kakei((1999)]

@ Bearing certain similarities with the KP and Toda chain
hierarchies, the DKP one is essentially different and less well
understood.
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Algorithm. One-variable reduction

One-variable reduction: solution depend on co-many variables t
only through 1 function.

Start with Hirota equations of the dispersionless hierarchy.

Introduce some functions to rewrite the equations in a more
compact form.

Easy calculations (take log, 0y, )
Consider one-variable reductions of the dispersionless hierarchy.
@ The consistency condition for one-variable reductions, Loewner
equation
o dispersionless KP < chordal Loewner equation
o dispersionless Toda < radial (i.e. original) Loewner equation
o dispersionless DKP < 7

The answer:
dispersionless DKP < annulus Loewner (Goluzin-Komatu) equation
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dDKP. Algebraic formulation

The dispersionless version of the DKP hierarchy (the dDKP
hierarchy) was suggested by Takasaki (2009). It is an infinite
system of differential equations for a real-valued function F = F(t)
of the infinite number of (real) “times” t = {ty, t1, to,...}.

D(DOF <1 _ 2214‘2 ezatotzam+o<z>+o<<))F> _ (1)
1— atl D(Z)F — 81.‘1D(<)F
z—(

z— C

z+¢ = 04(20 + D(2) + D(Q)) F,
where
Z—k
D(Z) = Z T (9tk .

k>1
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The differential equations are obtained by expanding these
equation in powers of z, (.
For example, the first two equations of the hierarchy are

6F2 + 3Fan — 4F3 = 12e%Fo0

(3)
2Fo3 + 4F$, + 6Fo1F11 — 6F01Fo2 = 3F12.

Here and below we use the short-hand notation
an = 8tm8t,,F-

The dispersionless KP equation written in the Hirota form

6F121 =+ 3F22 — 4F13 =0
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Elliptic parametrization

@ It was shown (V.A., A.Zabrodin) that equations (1), (2), when
rewritten in an elliptic parametrization in terms of Jacobi's
theta-functions 0,(u, 7), assume a nice and suggestive form:

(271 = ¢ 1)elPo+D) (g +DO)F _ 01(u(z)—u(C), 7). ()

@ The modular parameter 7 is a dynamical variable: 7 = 7(t).
@ In what follows we will use the differential operator

V(z) = 8y, + D(2). (6)
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@ Take the log of (4)

01(u(z1)—u(22))

log (z;* — 2, ') + V(21)V(22) F = log Galulz) —a(z) (7)
o Introduce the function
S(u,7) = log Zigz 3 , (8)
o Let's take Jy,
9V (21)V(22)F = Dy, log Z;EZEZ;:ZEZB G

e We get the equation

V(21)5(u(22)|7) = 9 S(u(21) — u(22)|7). (10)
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1-variable reductions

@ We are looking for solutions of the hierarchy such that u(z,t)
and 7(t) depend on the times through a single variable
A= A(t).

@ Our goal is to characterize the class of functions u(z, \), 7())
that are consistent with the structure of the hierarchy and can
be used for one-variable reductions.

@ It was shown that such one-variable reductions are classified by
solutions of a differential equation which is an elliptic analogue
of the famous Loéwner equation— Goluzin-Komatu equation:

4midzu(z,\) = {_ G (U(Z7 A)+E(N), %) +ta (5(/\), ;)}?);\7
(11

e We use notation (,(u,7) := 0, log0,(u, )
@ £()) is an arbitrary (continuous) function of A (the “driving
function”).

The formulas simplify a bit if we choose A\ = 7.
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The system of reduced equations and their solution.

In order to complete the description of one-variable reductions, we
should derive the equation satisfied by 7(t) and find its solution.

@ Here we use the expansion

7k
S(u(2) +€) = (&) + > =~ Bul9).

k>1
which defines the functions By(u) = By (u|T) and

S"(u(z) +¢€) _ z K
G 1+27¢k(§(7)‘7) (12)

k>1

@ In terms of these functions, the equations of the reduced
hierarchy are as follows:
or or _BUEDI)
ot or(&(7)|7) Oty Or(&(T)|7) == W )



The system of reduced equations and their solution.

@ The common solution to these equations can be written in the
hodograph form:

> tdk(E(n)Im) = (7). (14)
k=1

where ®(7) is an arbitrary function of 7.
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One-variable reduction, summary

o Start with equation of the dispersionless DKP hierarchy.
V(21)5(u(22)|7) = 0t S(u(z1) — u(22)|7).

e Consider one-variable reductions: 7(t), u(z,t) = u(z, 7(t)).
@ Find the consistency condition for one-variable reductions
(annulus Loewner (Goluzin-Komatu) equation).

amid-u(z,0) = — G (u(z, ) +E0), §) + G (60, 3).

(15)
@ Find the common solution of the system of reduced equations
or or
S = oI
in hodograph form
S tk(€(7)I7) = (7). (16)
k=1
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N-variable reductions

o We study diagonal N-variable reductions of the dDKP
hierarchy when u depends on the times through N real
variables \;.

@ The starting point is the system of N elliptic Léwner equations
which characterize the dependence of u(z) on the variables A;:

{Ai}={A1,.-, )

4mioyu(z, {Ai}) = [— G1 (U+§j7 %) + G (§j> %)} g;j’

(17)
e ¢ and 7 are functions of {\;}: & = &({\i})
o 7=1({\})
e We assume that ; are real-valued functions.
@ Their compatibility condition is expressed as the elliptic

Gibbons-Tsarev system
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The Gibbons-Tsarev system

The Gibbons-Tsarev system is the compatibility condition for the
system of elliptic Léwner equations:

88)’; - %(—Q (u+§j, g) + @ <£J7>>(;9)7\- : (18)

@ The compatibility condition is

)= 5%, o " ane oy
@ The left hand side is of the form
. F0 0% 01 )04 01 o) 07 . 07 Or
File) = Fa g ane T ane an T o, 8)\k+ij8/\j Dy
(19)
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The coefficients are:

1
FY = (10 +8).7) = 01(6, 7))

Ff(kz) - 4i7r1 (_Cl(u+§k,T’)+C1(£k,7’)+C1(U+§ja ') —Cl(fj,T,)>a

1 / / / / / / / /
Gk = W(m(ﬁ-fkﬁ ) =91 (u+E, ) =1 (ks ') +91 (8, T ))

+ (4711)2 (Cl(u + &) = Glu+ &, ) + Gg, T'))gol(u + &, )

(@mi)2 (Cl(u +&, ) = Gu+ &) + Cl(ﬁkﬁ')> p1(u+&,7)

1
+ W<_Cl(fk77/)@1(§k77/) + Cl(fj,T’)pﬂ@,r’)),

where

° @a(Xa 7_) = _aXCa(X7T)'

° pa(xa T) = 8X@a(xa T)'
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The Gibbons-Tsarev system

o We get the elliptic analogue of the famous Gibbons-Tsarev

system:
0 1 .y NN
87>\j e (Cl(—fk +&,7) =g, T )) 87)\1-’ (20)
0t 1 N OT OT
DMON —Tmm(fk—fjﬁ)ai)\kaf)\j (21)

forallj=1,....N, j#k.
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@ The dependence of the \;'s on t is given by the equation
S'(u(z) + &) 0N
S'(&) Oty

@ This equation contains an infinite system of partial differential
equations of hydrodynamic type.

V(Z))\j = (22)

e We introduce elliptic Faber functions ®4(u) via the expansion

0 Z_k
S(u(z) + w) = S(w) + > = Pi(w) or
k=1

S'(u(z) +w) = S'(w)+ > - d(w)  (23)

k=1
(here @) (w) = 0, ®Pr(w)). Then the system (22) reads

3A ®, (&)

= ¢ k({A }) 3t bjk = ) (24)
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Generalized hodograph method

@ We have reduced the dDKP hierarchy to the system of elliptic
Léwner equations and the auxiliary equations

oAi(t)

2 i S, (25)

Ot

where ¢; , are as in (24).
@ Step 1 to show that this system of equations is consistent.

@ Step 2 to show that it can be solved by Tsarev's generalized
hodograph method.
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Generalized hodograph method

@ As is easy to see, the compatibility condition of the system
(25) is

MGin  Onoiw
¢j,n - ¢i,n ¢j,n/ - ¢i,n’

@ We should show that

forall i #j, n,n'.

O\ ®i,n
Fj =—"—"— 26
Y ¢U,n - ¢U,n ( )

does not depend on n.
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Generalized hodograph method

o Consider the following system for R; = R;({\;}), i =1,...,N:

Y

where [ is defined as

/
- % 5/(51) S"(& = ¢ or
m S (f,) 8/\J-
(when N =1, the condition (27) is void).
@ Then the following holds:
(i) The system (27) is compatible.
(i) Assume that R; satisfy the system (27). If A;(t) is defined
implicitly by the hodograph relation

o+ dia({NHtn = Ri({A)), (29)

n>1

then \j(t) satisfy (25).

M= (28)
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Generalized hodograph method

@ In fact the compatibility conditions of the system (27) are

ory oy
e O

i # 7k, (30)

(which is the Tsarev compatibility condition), together with

arj; .
87)\7( = F,JFJk + F,-krkj — F,-kF,-j, / ;éj ;é k. (31)
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N-variable reductions, summary

o We start with the system of N elliptic Léwner equations which
characterize the dependence of u(z) on the variables \;:

o1
N’
(32)

4midyu(z,{\i}) = [* C1 (u+§j, %) + G (fjv %)}

@ Their compatibility condition is expressed as the elliptic
Gibbons-Tsarev system

0 1 0
o= (a6 -G m) 5T @

0t 1 N OT OT
ooy, om S GTanay BY

forall j=1,....N, j#k.
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N-variable reductions, summary

@ We have reduced the dDKP hierarchy to the system of elliptic
Lowner equations and the auxiliary equations

8)\,‘(1:) o 8)\,‘(12)
o = Gl ) T (35)
where ¢; , are as in (24).
@ We show that O 6
A Pin

M. =—1— 36
Y ¢U,n - ¢U,n ( )

does not depend on n and this system of equations is

consistent.

@ We show that it can be solved by Tsarev's generalized
hodograph method.
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N-variable reductions, summary

For this we

@ Consider the following system for R; = R;({\;}), i =1,...,N:

%:ry(ijR,-), ihj=1,...,N, i#], (37)
O
where ['j; is defined as
_ 1 Sl(gj) " or

@ Then we chek that :
(i) The system (37) is compatible:

ory Ol .
= k
= i#j# kK, (39)
together with
ar; .
an, = il Tulg —Tuly, i j# Kk (40)
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N-variable reductions, summary

(i) Assume that R; satisfy the system (37). If \;(t) is defined
implicitly by the hodograph relation

to+ Y din({AH)tn = Ri({A}), (41)

n>1
then \;(t) satisfy

8/\,‘(t)_ . . 8)\,‘(t)
) e S, (#2)

Thank you for attention!
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@ In what follows we use the differential operator
V(z) = 0, + D(2). (43)
@ Introducing the functions
p(z) =z -0, V(2)F,  w(z) = 2% 2%V@F  (44)

@ we can rewrite equations (1), (2) in a more compact form

D(@D(OF (1 1 > _ p(z) = p(¢) (45)

w(z)w() z—¢
e~ DEDIOF+26%,F W():ZV(C) — p(z) +p(0).  (46)
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dDKP

Multiplying the two equations, we get the relation
pA(2) — €20 (w(z2) + w(2)) = pA(C) — €20 (w(Q) + w ()

from which it follows that p?(z) — e>Foo (W(Z) + Wil(z)) does not
depend on z (here and below we use the short-hand notation
Fron = at at ). Tending z to infinity, we find that this expression is

equal to Fop — 2F11 — FZ;. Therefore, we conclude that p(z), w(z)
satisfy the algebraic equation

pA(2) = R2(w(z) + w(2)) + V., (47)
where

R = efoo, V = Fop — 2F11 — F§y. (48)
are real numbers depending on the times (R is positive).

@ This equation defines an elliptic curve, with w, p being

algebraic functions on this curve.
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@ A natural further step is to uniformize the curve through
elliptic functions. We use the standard Jacobi theta functions
02(u) = 0:(u,7) (a =1,2,3,4). The elliptic parametrization
of (47) is as follows:

w(z) = p(z) = 7 63(0)

where u(z) = u(z,t) is some function of z, v is a
z-independent factor.

R=7620)65(0), vV =—+2(630)+63(0)). (50)

Here ~y is an arbitrary real parameter but we will see that it is
a dynamical variable, as well as the modular parameter 7:

v=7(t), 7 =7(t).
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@ It is convenient to normalize u(z) by the condition u(o0) =0,
with the expansion around oo being

Clit) C22(2t) 4o (51)

u(z,t) =

with real coefficients c;.
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@ This identity allows us to represent the equations

eD(2)D(C)F (1 _ 1 ) _ p(z) — p(€) (52)

w(z)w(¢) z—¢
oeporane MW o ). (s3)
as a single equation:
(Zfl _ Z;l) eV(@)V(z2)F _ 91(“(21)_u(z2)) (54)

Oa(u(z1)—u(22))
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