Reductions of the dispersionless DKP hierarchy

Valeria Akhmedova

Faculty of Mathematics/
International Laboratory of Representation Theory and Mathematical Physics, National Research University Higher School of Economics

Valday. May 2018

Introduction

- Integrable hierarchies='solvable' systems with infinitely many variables (e.g., $\mathbf{t}=\left\{t_{1}, t_{2}, \ldots\right\}$)
- Dispersionless integrable hierarchies =quasi-classical limits of certain integrable hierarchies.
- N -variable reduction: solution depend on ∞-many variables t only through N functions,
- The DKP hierarchy is one of the integrable hierarchies introduced by M.Jimbo and T.Miwa in 1983. It was subsequently rediscovered and came to be also known as
- the coupled KP hierarchy [R.Hirota,Y.Ohta (1991)]
- the Pfaff lattice [M.Adler and others (1999-2002), S.Kakei((1999)]
- Bearing certain similarities with the KP and Toda chain hierarchies, the DKP one is essentially different and less well understood.

Algorithm. One-variable reduction

One-variable reduction: solution depend on ∞-many variables t only through 1 function.

- Start with Hirota equations of the dispersionless hierarchy.
- Introduce some functions to rewrite the equations in a more compact form.
- Easy calculations (take log, $\partial_{t_{1}}$)
- Consider one-variable reductions of the dispersionless hierarchy.
- The consistency condition for one-variable reductions, Loewner equation
- dispersionless KP \Leftrightarrow chordal Loewner equation
- dispersionless Toda \Leftrightarrow radial (i.e. original) Loewner equation
- dispersionless DKP \Leftrightarrow ?

The answer: dispersionless DKP \Leftrightarrow annulus Loewner (Goluzin-Komatu) equation

dDKP. Algebraic formulation

The dispersionless version of the DKP hierarchy (the dDKP hierarchy) was suggested by Takasaki (2009). It is an infinite system of differential equations for a real-valued function $F=F(\mathbf{t})$ of the infinite number of (real) "times" $\mathbf{t}=\left\{t_{0}, t_{1}, t_{2}, \ldots\right\}$.

$$
\begin{array}{r}
e^{D(z) D(\zeta) F}\left(1-\frac{1}{z^{2} \zeta^{2}} e^{2 \partial_{t_{0}}\left(2 \partial_{t_{0}}+D(z)+D(\zeta)\right) F}\right)= \\
1-\frac{\partial_{t_{1}} D(z) F-\partial_{t_{1}} D(\zeta) F}{z-\zeta} \\
e^{-D(z) D(\zeta) F} \frac{z^{2} e^{-2 \partial_{t_{0}} D(z) F}-\zeta^{2} e^{-2 \partial_{t_{0}} D(\zeta) F}}{z-\zeta}= \tag{2}\\
z+\zeta-\partial_{t_{1}}\left(2 \partial_{t_{0}}+D(z)+D(\zeta)\right) F
\end{array}
$$

where

$$
D(z)=\sum_{k \geq 1} \frac{z^{-k}}{k} \partial_{t_{k}}
$$

- The differential equations are obtained by expanding these equation in powers of z, ζ.
For example, the first two equations of the hierarchy are

$$
\left\{\begin{array}{l}
6 F_{11}^{2}+3 F_{22}-4 F_{13}=12 e^{4 F_{00}} \tag{3}\\
2 F_{03}+4 F_{01}^{3}+6 F_{01} F_{11}-6 F_{01} F_{02}=3 F_{12}
\end{array}\right.
$$

Here and below we use the short-hand notation $F_{m n} \equiv \partial_{t_{m}} \partial_{t_{n}} F$.

- The dispersionless KP equation written in the Hirota form

$$
6 F_{11}^{2}+3 F_{22}-4 F_{13}=0
$$

- It was shown (V.A., A.Zabrodin) that equations (1), (2), when rewritten in an elliptic parametrization in terms of Jacobi's theta-functions $\theta_{a}(u, \tau)$, assume a nice and suggestive form:

$$
\begin{equation*}
\left(z^{-1}-\zeta^{-1}\right) e^{\left(\partial_{t_{0}}+D(z)\right)\left(\partial_{t_{0}}+D(\zeta)\right) F}=\frac{\theta_{1}(u(z)-u(\zeta), \tau)}{\theta_{4}(u(z)-u(\zeta), \tau)} \tag{4}
\end{equation*}
$$

Here the function $u(z)$ is defined by

$$
\begin{equation*}
e^{\partial_{t_{0}}\left(\partial_{t_{0}}+D(z)\right) F}=z \frac{\theta_{1}(u(z), \tau)}{\theta_{4}(u(z), \tau)} \tag{5}
\end{equation*}
$$

- The modular parameter τ is a dynamical variable: $\tau=\tau(\mathbf{t})$.
- In what follows we will use the differential operator

$$
\begin{equation*}
\nabla(z)=\partial_{t_{0}}+D(z) \tag{6}
\end{equation*}
$$

- Take the log of (4)

$$
\begin{equation*}
\log \left(z_{1}^{-1}-z_{2}^{-1}\right)+\nabla\left(z_{1}\right) \nabla\left(z_{2}\right) F=\log \frac{\theta_{1}\left(u\left(z_{1}\right)-u\left(z_{2}\right)\right)}{\theta_{4}\left(u\left(z_{1}\right)-u\left(z_{2}\right)\right)} \tag{7}
\end{equation*}
$$

- Introduce the function

$$
\begin{equation*}
S(u, \tau):=\log \frac{\theta_{1}(u, \tau)}{\theta_{4}(u, \tau)} \tag{8}
\end{equation*}
$$

- Let's take $\partial_{t_{0}}$

$$
\begin{equation*}
\partial_{t_{0}} \nabla\left(z_{1}\right) \nabla\left(z_{2}\right) F=\partial_{t_{0}} \log \frac{\theta_{1}\left(u\left(z_{1}\right)-u\left(z_{2}\right)\right)}{\theta_{4}\left(u\left(z_{1}\right)-u\left(z_{2}\right)\right)} \tag{9}
\end{equation*}
$$

- We get the equation

$$
\begin{equation*}
\nabla\left(z_{1}\right) S\left(u\left(z_{2}\right) \mid \tau\right)=\partial_{t_{0}} S\left(u\left(z_{1}\right)-u\left(z_{2}\right) \mid \tau\right) \tag{10}
\end{equation*}
$$

- We are looking for solutions of the hierarchy such that $u(z, t)$ and $\tau(\mathbf{t})$ depend on the times through a single variable $\lambda=\lambda(\mathbf{t})$.
- Our goal is to characterize the class of functions $u(z, \lambda), \tau(\lambda)$ that are consistent with the structure of the hierarchy and can be used for one-variable reductions.
- It was shown that such one-variable reductions are classified by solutions of a differential equation which is an elliptic analogue of the famous Löwner equation- Goluzin-Komatu equation:

$$
\begin{equation*}
4 \pi \mathrm{i} \partial_{\lambda} u(z, \lambda)=\left[-\zeta_{1}\left(u(z, \lambda)+\xi(\lambda), \frac{\tau}{2}\right)+\zeta_{1}\left(\xi(\lambda), \frac{\tau}{2}\right)\right] \frac{\partial \tau}{\partial \lambda} \tag{11}
\end{equation*}
$$

- We use notation $\zeta_{a}(u, \tau):=\partial_{u} \log \theta_{a}(u, \tau)$
- $\xi(\lambda)$ is an arbitrary (continuous) function of λ (the "driving function").

The formulas simplify a bit if we choose $\lambda=\tau$.

In order to complete the description of one-variable reductions, we should derive the equation satisfied by $\tau(\mathbf{t})$ and find its solution.

- Here we use the expansion

$$
S(u(z)+\xi)=S(\xi)+\sum_{k \geq 1} \frac{z^{-k}}{k} B_{k}(\xi)
$$

which defines the functions $B_{k}(u)=B_{k}(u \mid \tau)$ and

$$
\begin{equation*}
\frac{S^{\prime}(u(z)+\xi)}{S^{\prime}(\xi)}=1+\sum_{k \geq 1} \frac{z^{-k}}{k} \phi_{k}(\xi(\tau) \mid \tau) \tag{12}
\end{equation*}
$$

- In terms of these functions, the equations of the reduced hierarchy are as follows:

$$
\begin{equation*}
\frac{\partial \tau}{\partial t_{k}}=\phi_{k}(\xi(\tau) \mid \tau) \frac{\partial \tau}{\partial t_{0}}, \quad \phi_{k}(\xi(\tau) \mid \tau):=\frac{B_{k}^{\prime}(\xi(\tau) \mid \tau)}{S^{\prime}(\xi(\tau) \mid \tau)}, \quad k \geq 1 \tag{13}
\end{equation*}
$$

- The common solution to these equations can be written in the hodograph form:

$$
\begin{equation*}
\sum_{k=1}^{\infty} t_{k} \phi_{k}(\xi(\tau) \mid \tau)=\Phi(\tau) \tag{14}
\end{equation*}
$$

where $\Phi(\tau)$ is an arbitrary function of τ.

One-variable reduction, summary

- Start with equation of the dispersionless DKP hierarchy.

$$
\nabla\left(z_{1}\right) S\left(u\left(z_{2}\right) \mid \tau\right)=\partial_{t_{0}} S\left(u\left(z_{1}\right)-u\left(z_{2}\right) \mid \tau\right)
$$

- Consider one-variable reductions: $\tau(\mathbf{t}), u(z, \mathbf{t})=u(z, \tau(\mathbf{t}))$.
- Find the consistency condition for one-variable reductions (annulus Loewner (Goluzin-Komatu) equation).

$$
\begin{equation*}
4 \pi \mathrm{i} \partial_{\tau} u(z, \lambda)=-\zeta_{1}\left(u(z, \lambda)+\xi(\lambda), \frac{\tau}{2}\right)+\zeta_{1}\left(\xi(\lambda), \frac{\tau}{2}\right) \tag{15}
\end{equation*}
$$

- Find the common solution of the system of reduced equations

$$
\frac{\partial \tau}{\partial t_{k}}=\phi_{k}(\xi(\tau) \mid \tau) \frac{\partial \tau}{\partial t_{0}}
$$

in hodograph form

$$
\begin{equation*}
\sum_{k=1}^{\infty} t_{k} \phi_{k}(\xi(\tau) \mid \tau)=\Phi(\tau) \tag{16}
\end{equation*}
$$

N -variable reductions

- We study diagonal N-variable reductions of the dDKP hierarchy when u depends on the times through N real variables λ_{j}.
- The starting point is the system of N elliptic Löwner equations which characterize the dependence of $u(z)$ on the variables λ_{j} : $\left\{\lambda_{i}\right\}=\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$

$$
\begin{equation*}
4 \pi \mathrm{i} \partial_{\lambda_{j}} u\left(z,\left\{\lambda_{i}\right\}\right)=\left[-\zeta_{1}\left(u+\xi_{j}, \frac{\tau}{2}\right)+\zeta_{1}\left(\xi_{j}, \frac{\tau}{2}\right)\right] \frac{\partial \tau}{\partial \lambda_{j}} \tag{17}
\end{equation*}
$$

- ξ_{j} and τ are functions of $\left\{\lambda_{i}\right\}: \xi_{j}=\xi_{j}\left(\left\{\lambda_{i}\right\}\right)$
- $\tau=\tau\left(\left\{\lambda_{i}\right\}\right)$.
- We assume that ξ_{j} are real-valued functions.
- Their compatibility condition is expressed as the elliptic Gibbons-Tsarev system

The Gibbons-Tsarev system is the compatibility condition for the system of elliptic Löwner equations:

$$
\begin{equation*}
\frac{\partial u}{\partial \lambda_{j}}=\frac{1}{4 \pi \mathrm{i}}\left(-\zeta_{1}\left(u+\xi_{j}, \frac{\tau}{2}\right)+\zeta_{1}\left(\xi_{j}, \frac{\tau}{2}\right)\right) \frac{\partial \tau}{\partial \lambda_{j}} \tag{18}
\end{equation*}
$$

- The compatibility condition is

$$
F_{j k}(u):=\frac{\partial}{\partial \lambda_{j}} \frac{\partial u}{\partial \lambda_{k}}-\frac{\partial}{\partial \lambda_{k}} \frac{\partial u}{\partial \lambda_{j}}=0 .
$$

- The left hand side is of the form

$$
\begin{equation*}
F_{j k}(u)=F_{j k}^{(1)} \frac{\partial \xi_{k}}{\partial \lambda_{j}} \frac{\partial \tau}{\partial \lambda_{k}}-F_{k j}^{(1)} \frac{\partial \xi_{j}}{\partial \lambda_{k}} \frac{\partial \tau}{\partial \lambda_{j}}+F_{j k}^{(2)} \frac{\partial^{2} \tau}{\partial \lambda_{j} \partial \lambda_{k}}+G_{j k} \frac{\partial \tau}{\partial \lambda_{j}} \frac{\partial \tau}{\partial \lambda_{k}} \tag{19}
\end{equation*}
$$

The coefficients are:

$$
\begin{gathered}
\left.F_{j k}^{(1)}=\frac{1}{4 \pi \mathrm{i}}\left(\wp_{1}\left(u+\xi_{k}\right), \tau^{\prime}\right)-\wp_{1}\left(\xi_{k}, \tau^{\prime}\right)\right), \\
F_{j k}^{(2)}=\frac{1}{4 \pi \mathrm{i}}\left(-\zeta_{1}\left(u+\xi_{k}, \tau^{\prime}\right)+\zeta_{1}\left(\xi_{k}, \tau^{\prime}\right)+\zeta_{1}\left(u+\xi_{j}, \tau^{\prime}\right)-\zeta_{1}\left(\xi_{j}, \tau^{\prime}\right)\right), \\
G_{j k}=\frac{1}{2(4 \pi \mathrm{i})^{2}}\left(\wp_{1}^{\prime}\left(u+\xi_{k}, \tau^{\prime}\right)-\wp_{1}^{\prime}\left(u+\xi_{j}, \tau^{\prime}\right)-\wp_{1}^{\prime}\left(\xi_{k}, \tau^{\prime}\right)+\wp_{1}^{\prime}\left(\xi_{j}, \tau^{\prime}\right)\right) \\
+\frac{1}{(4 \pi \mathrm{i})^{2}}\left(\zeta_{1}\left(u+\xi_{k}, \tau^{\prime}\right)-\zeta_{1}\left(u+\xi_{j}, \tau^{\prime}\right)+\zeta_{1}\left(\xi_{j}, \tau^{\prime}\right)\right) \wp_{1}\left(u+\xi_{k}, \tau^{\prime}\right) \\
-\frac{1}{(4 \pi \mathrm{i})^{2}}\left(\zeta_{1}\left(u+\xi_{j}, \tau^{\prime}\right)-\zeta_{1}\left(u+\xi_{k}, \tau^{\prime}\right)+\zeta_{1}\left(\xi_{k}, \tau^{\prime}\right)\right) \wp_{1}\left(u+\xi_{j}, \tau^{\prime}\right) \\
+\frac{1}{(4 \pi \mathrm{i})^{2}}\left(-\zeta_{1}\left(\xi_{k}, \tau^{\prime}\right) \wp_{1}\left(\xi_{k}, \tau^{\prime}\right)+\zeta_{1}\left(\xi_{j}, \tau^{\prime}\right) \wp_{1}\left(\xi_{j}, \tau^{\prime}\right)\right),
\end{gathered}
$$

where

- $\wp_{a}(x, \tau)=-\partial_{x} \zeta_{a}(x, \tau)$,
- $\wp_{a}^{\prime}(x, \tau)=\partial_{x} \wp_{a}(x, \tau)$.

The Gibbons-Tsarev system

- We get the elliptic analogue of the famous Gibbons-Tsarev system:

$$
\begin{array}{r}
\frac{\partial \xi_{k}}{\partial \lambda_{j}}=\frac{1}{4 \pi \mathrm{i}}\left(\zeta_{1}\left(-\xi_{k}+\xi_{j}, \tau^{\prime}\right)-\zeta_{1}\left(\xi_{j}, \tau^{\prime}\right)\right) \frac{\partial \tau}{\partial \lambda_{j}} \\
\frac{\partial^{2} \tau}{\partial \lambda_{k} \partial \lambda_{j}}=\frac{1}{2 \pi \mathrm{i}} \wp_{1}\left(\xi_{k}-\xi_{j}, \tau^{\prime}\right) \frac{\partial \tau}{\partial \lambda_{k}} \frac{\partial \tau}{\partial \lambda_{j}} \tag{21}
\end{array}
$$

for all $j=1, \ldots, N, j \neq k$.

- The dependence of the λ_{j} 's on \mathbf{t} is given by the equation

$$
\begin{equation*}
\nabla(z) \lambda_{j}=\frac{S^{\prime}\left(u(z)+\xi_{j}\right)}{S^{\prime}\left(\xi_{j}\right)} \frac{\partial \lambda_{j}}{\partial t_{0}} \tag{22}
\end{equation*}
$$

- This equation contains an infinite system of partial differential equations of hydrodynamic type.
- We introduce elliptic Faber functions $\Phi_{k}(u)$ via the expansion

$$
\begin{align*}
& S(u(z)+w)=S(w)+\sum_{k=1}^{\infty} \frac{z^{-k}}{k} \Phi_{k}(w) \text { or } \\
& S^{\prime}(u(z)+w)=S^{\prime}(w)+\sum_{k=1}^{\infty} \frac{z^{-k}}{k} \Phi_{k}^{\prime}(w) \tag{23}
\end{align*}
$$

(here $\left.\Phi_{k}^{\prime}(w)=\partial_{w} \Phi_{k}(w)\right)$. Then the system (22) reads

$$
\begin{equation*}
\frac{\partial \lambda_{j}}{\partial t_{k}}=\phi_{j, k}\left(\left\{\lambda_{i}\right\}\right) \frac{\partial \lambda_{j}}{\partial t_{0}}, \quad \phi_{j, k}=\frac{\Phi_{k}^{\prime}\left(\xi_{j}\right)}{S^{\prime}\left(\xi_{j}\right)} \tag{24}
\end{equation*}
$$

Generalized hodograph method

- We have reduced the dDKP hierarchy to the system of elliptic Löwner equations and the auxiliary equations

$$
\begin{equation*}
\frac{\partial \lambda_{i}(\mathbf{t})}{\partial t_{n}}=\phi_{i, n}\left(\left\{\lambda_{j}(\mathbf{t})\right) \frac{\partial \lambda_{i}(\mathbf{t})}{\partial t_{0}},\right. \tag{25}
\end{equation*}
$$

where $\phi_{i, n}$ are as in (24).

- Step 1 to show that this system of equations is consistent.
- Step 2 to show that it can be solved by Tsarev's generalized hodograph method.

Generalized hodograph method

- As is easy to see, the compatibility condition of the system (25) is

$$
\frac{\partial_{\lambda_{j}} \phi_{i, n}}{\phi_{j, n}-\phi_{i, n}}=\frac{\partial_{\lambda_{j}} \phi_{i, n^{\prime}}}{\phi_{j, n^{\prime}}-\phi_{i, n^{\prime}}} \quad \text { for all } i \neq j, n, n^{\prime}
$$

- We should show that

$$
\begin{equation*}
\Gamma_{i j}:=\frac{\partial_{\lambda_{j}} \phi_{i, n}}{\phi_{j, n}-\phi_{i, n}} \tag{26}
\end{equation*}
$$

does not depend on n.

Generalized hodograph method

- Consider the following system for $R_{i}=R_{i}\left(\left\{\lambda_{j}\right\}\right), i=1, \ldots, N$:

$$
\begin{equation*}
\frac{\partial R_{i}}{\partial \lambda_{j}}=\Gamma_{i j}\left(R_{j}-R_{i}\right), \quad i, j=1, \ldots, N, \quad i \neq j \tag{27}
\end{equation*}
$$

where $\Gamma_{i j}$ is defined as

$$
\begin{equation*}
\Gamma_{i j}=-\frac{1}{4 \pi \mathrm{i}} \frac{S^{\prime}\left(\xi_{j}\right)}{S^{\prime}\left(\xi_{i}\right)} S^{\prime \prime}\left(\xi_{i}-\xi_{j}\right) \frac{\partial \tau}{\partial \lambda_{j}} \tag{28}
\end{equation*}
$$

(when $N=1$, the condition (27) is void).

- Then the following holds:
(i) The system (27) is compatible.
(ii) Assume that R_{i} satisfy the system (27). If $\lambda_{i}(\mathbf{t})$ is defined implicitly by the hodograph relation

$$
\begin{equation*}
t_{0}+\sum_{n \geq 1} \phi_{i, n}\left(\left\{\lambda_{j}\right\}\right) t_{n}=R_{i}\left(\left\{\lambda_{j}\right\}\right), \tag{29}
\end{equation*}
$$

then $\lambda_{j}(\mathbf{t})$ satisfy (25).

Generalized hodograph method

- In fact the compatibility conditions of the system (27) are

$$
\begin{equation*}
\frac{\partial \Gamma_{i j}}{\partial \lambda_{k}}=\frac{\partial \Gamma_{i k}}{\partial \lambda_{j}}, \quad i \neq j \neq k \tag{30}
\end{equation*}
$$

(which is the Tsarev compatibility condition), together with

$$
\begin{equation*}
\frac{\partial \Gamma_{i j}}{\partial \lambda_{k}}=\Gamma_{i j} \Gamma_{j k}+\Gamma_{i k} \Gamma_{k j}-\Gamma_{i k} \Gamma_{i j}, \quad i \neq j \neq k \tag{31}
\end{equation*}
$$

N-variable reductions, summary

- We start with the system of N elliptic Löwner equations which characterize the dependence of $u(z)$ on the variables λ_{j} :

$$
\begin{equation*}
4 \pi \mathrm{i} \partial_{\lambda_{j}} u\left(z,\left\{\lambda_{i}\right\}\right)=\left[-\zeta_{1}\left(u+\xi_{j}, \frac{\tau}{2}\right)+\zeta_{1}\left(\xi_{j}, \frac{\tau}{2}\right)\right] \frac{\partial \tau}{\partial \lambda_{j}} \tag{32}
\end{equation*}
$$

- Their compatibility condition is expressed as the elliptic Gibbons-Tsarev system

$$
\begin{array}{r}
\frac{\partial \xi_{k}}{\partial \lambda_{j}}=\frac{1}{4 \pi \mathrm{i}}\left(\zeta_{1}\left(-\xi_{k}+\xi_{j}, \tau^{\prime}\right)-\zeta_{1}\left(\xi_{j}, \tau^{\prime}\right)\right) \frac{\partial \tau}{\partial \lambda_{j}} \\
\frac{\partial^{2} \tau}{\partial \lambda_{k} \partial \lambda_{j}}=\frac{1}{2 \pi \mathrm{i}} \wp_{1}\left(\xi_{k}-\xi_{j}, \tau^{\prime}\right) \frac{\partial \tau}{\partial \lambda_{k}} \frac{\partial \tau}{\partial \lambda_{j}} \tag{34}
\end{array}
$$

for all $j=1, \ldots, N, j \neq k$.

N-variable reductions, summary

- We have reduced the dDKP hierarchy to the system of elliptic Löwner equations and the auxiliary equations

$$
\begin{equation*}
\frac{\partial \lambda_{i}(\mathbf{t})}{\partial t_{n}}=\phi_{i, n}\left(\left\{\lambda_{j}(\mathbf{t})\right) \frac{\partial \lambda_{i}(\mathbf{t})}{\partial t_{0}},\right. \tag{35}
\end{equation*}
$$

where $\phi_{i, n}$ are as in (24).

- We show that

$$
\begin{equation*}
\Gamma_{i j}:=\frac{\partial_{\lambda_{j}} \phi_{i, n}}{\phi_{j, n}-\phi_{i, n}} \tag{36}
\end{equation*}
$$

does not depend on n and this system of equations is consistent.

- We show that it can be solved by Tsarev's generalized hodograph method.

N-variable reductions, summary

For this we

- Consider the following system for $R_{i}=R_{i}\left(\left\{\lambda_{j}\right\}\right), i=1, \ldots, N$:

$$
\begin{equation*}
\frac{\partial R_{i}}{\partial \lambda_{j}}=\Gamma_{i j}\left(R_{j}-R_{i}\right), \quad i, j=1, \ldots, N, \quad i \neq j, \tag{37}
\end{equation*}
$$

where $\Gamma_{i j}$ is defined as

$$
\begin{equation*}
\Gamma_{i j}=-\frac{1}{4 \pi \mathrm{i}} \frac{S^{\prime}\left(\xi_{j}\right)}{S^{\prime}\left(\xi_{i}\right)} S^{\prime \prime}\left(\xi_{i}-\xi_{j}\right) \frac{\partial \tau}{\partial \lambda_{j}} \tag{38}
\end{equation*}
$$

- Then we chek that:
(i) The system (37) is compatible:

$$
\begin{equation*}
\frac{\partial \Gamma_{i j}}{\partial \lambda_{k}}=\frac{\partial \Gamma_{i k}}{\partial \lambda_{j}}, \quad i \neq j \neq k, \tag{39}
\end{equation*}
$$

together with

$$
\begin{equation*}
\frac{\partial \Gamma_{i j}}{\partial \lambda_{k}}=\Gamma_{i j} \Gamma_{j k}+\Gamma_{i k} \Gamma_{k j}-\Gamma_{i k} \Gamma_{i j}, \quad i \neq j \neq k . \tag{40}
\end{equation*}
$$

N-variable reductions, summary

(ii) Assume that R_{i} satisfy the system (37). If $\lambda_{i}(\mathbf{t})$ is defined implicitly by the hodograph relation

$$
\begin{equation*}
t_{0}+\sum_{n \geq 1} \phi_{i, n}\left(\left\{\lambda_{j}\right\}\right) t_{n}=R_{i}\left(\left\{\lambda_{j}\right\}\right) \tag{41}
\end{equation*}
$$

then $\lambda_{j}(\mathbf{t})$ satisfy

$$
\begin{equation*}
\frac{\partial \lambda_{i}(\mathbf{t})}{\partial t_{n}}=\phi_{i, n}\left(\left\{\lambda_{j}(\mathbf{t})\right) \frac{\partial \lambda_{j}(\mathbf{t})}{\partial t_{0}},\right. \tag{42}
\end{equation*}
$$

Thank you for attention!

- In what follows we use the differential operator

$$
\begin{equation*}
\nabla(z)=\partial_{t_{0}}+D(z) \tag{43}
\end{equation*}
$$

- Introducing the functions

$$
\begin{equation*}
p(z)=z-\partial_{t_{1}} \nabla(z) F, \quad w(z)=z^{2} e^{-2 \partial_{t_{0}} \nabla(z) F} \tag{44}
\end{equation*}
$$

- we can rewrite equations (1), (2) in a more compact form

$$
\begin{align*}
e^{D(z) D(\zeta) F}\left(1-\frac{1}{w(z) w(\zeta)}\right) & =\frac{p(z)-p(\zeta)}{z-\zeta}, \tag{45}\\
e^{-D(z) D(\zeta) F+2 \partial_{t_{0}}^{2} F} \frac{w(z)-w(\zeta)}{z-\zeta} & =p(z)+p(\zeta) \tag{46}
\end{align*}
$$

dDKP

Multiplying the two equations, we get the relation

$$
p^{2}(z)-e^{2 F_{00}}\left(w(z)+w^{-1}(z)\right)=p^{2}(\zeta)-e^{2 F_{00}}\left(w(\zeta)+w^{-1}(\zeta)\right)
$$

from which it follows that $p^{2}(z)-e^{2 F_{00}}\left(w(z)+w^{-1}(z)\right)$ does not depend on z (here and below we use the short-hand notation $\left.F_{m n}=\frac{\partial^{2} F}{\partial t_{m} \partial t_{n}}\right)$. Tending z to infinity, we find that this expression is equal to $F_{02}-2 F_{11}-F_{01}^{2}$. Therefore, we conclude that $p(z), w(z)$ satisfy the algebraic equation

$$
\begin{equation*}
p^{2}(z)=R^{2}\left(w(z)+w^{-1}(z)\right)+V, \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
R=e^{F_{00}}, \quad V=F_{02}-2 F_{11}-F_{01}^{2} \tag{48}
\end{equation*}
$$

are real numbers depending on the times (R is positive).

- This equation defines an elliptic curve, with w, p being algebraic functions on this curve.
- A natural further step is to uniformize the curve through elliptic functions. We use the standard Jacobi theta functions $\theta_{a}(u)=\theta_{a}(u, \tau)(a=1,2,3,4)$. The elliptic parametrization of (47) is as follows:

$$
\begin{equation*}
w(z)=\frac{\theta_{4}^{2}(u(z))}{\theta_{1}^{2}(u(z))}, \quad p(z)=\gamma \theta_{4}^{2}(0) \frac{\theta_{2}(u(z)) \theta_{3}(u(z))}{\theta_{1}(u(z)) \theta_{4}(u(z))} \tag{49}
\end{equation*}
$$

where $u(z)=u(z, t)$ is some function of z, γ is a z-independent factor.

$$
\begin{equation*}
R=\gamma \theta_{2}(0) \theta_{3}(0), \quad V=-\gamma^{2}\left(\theta_{2}^{4}(0)+\theta_{3}^{4}(0)\right) \tag{50}
\end{equation*}
$$

Here γ is an arbitrary real parameter but we will see that it is a dynamical variable, as well as the modular parameter τ :
$\gamma=\gamma(\mathbf{t}), \tau=\tau(\mathbf{t})$.

- It is convenient to normalize $u(z)$ by the condition $u(\infty)=0$, with the expansion around ∞ being

$$
\begin{equation*}
u(z, \mathbf{t})=\frac{c_{1}(\mathbf{t})}{z}+\frac{c_{2}(\mathbf{t})}{z^{2}}+\ldots \tag{51}
\end{equation*}
$$

with real coefficients c_{i}.

- This identity allows us to represent the equations

$$
\begin{align*}
e^{D(z) D(\zeta) F}\left(1-\frac{1}{w(z) w(\zeta)}\right) & =\frac{p(z)-p(\zeta)}{z-\zeta}, \tag{52}\\
e^{-D(z) D(\zeta) F+2 \partial_{t_{0}}^{2} F} \frac{w(z)-w(\zeta)}{z-\zeta} & =p(z)+p(\zeta) \tag{53}
\end{align*}
$$

as a single equation:

$$
\begin{equation*}
\left(z_{1}^{-1}-z_{2}^{-1}\right) e^{\nabla\left(z_{1}\right) \nabla\left(z_{2}\right) F}=\frac{\theta_{1}\left(u\left(z_{1}\right)-u\left(z_{2}\right)\right)}{\theta_{4}\left(u\left(z_{1}\right)-u\left(z_{2}\right)\right)} \tag{54}
\end{equation*}
$$

