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Introduction

Integrable hierarchies=’solvable’ systems with infinitely many
variables (e.g., t = {t1, t2, . . .})
Dispersionless integrable hierarchies =quasi-classical limits of
certain integrable hierarchies.
N-variable reduction: solution depend on ∞-many variables t
only through N functions,
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DKP

The DKP hierarchy is one of the integrable hierarchies
introduced by M.Jimbo and T.Miwa in 1983. It was
subsequently rediscovered and came to be also known as
the coupled KP hierarchy [R.Hirota,Y.Ohta (1991)]
the Pfaff lattice [M.Adler and others (1999-2002),
S.Kakei((1999)]
Bearing certain similarities with the KP and Toda chain
hierarchies, the DKP one is essentially different and less well
understood.
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Algorithm. One-variable reduction

One-variable reduction: solution depend on ∞-many variables t
only through 1 function.

Start with Hirota equations of the dispersionless hierarchy.
Introduce some functions to rewrite the equations in a more
compact form.
Easy calculations (take log, 𝜕t1)
Consider one-variable reductions of the dispersionless hierarchy.
The consistency condition for one-variable reductions, Loewner
equation

dispersionless KP ⇔ chordal Loewner equation
dispersionless Toda ⇔ radial (i.e. original) Loewner equation
dispersionless DKP ⇔ ?

The answer:
dispersionless DKP ⇔ annulus Loewner (Goluzin-Komatu) equation
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dDKP. Algebraic formulation

The dispersionless version of the DKP hierarchy (the dDKP
hierarchy) was suggested by Takasaki (2009). It is an infinite
system of differential equations for a real-valued function F = F (t)
of the infinite number of (real) “times” t = {t0, t1, t2, . . .}.

eD(z)D(𝜁)F

(︂
1− 1

z2𝜁2 e2𝜕t0 (2𝜕t0+D(z)+D(𝜁))F

)︂
= (1)

1− 𝜕t1D(z)F − 𝜕t1D(𝜁)F

z − 𝜁

e−D(z)D(𝜁)F z
2e−2𝜕t0D(z)F − 𝜁2e−2𝜕t0D(𝜁)F

z − 𝜁
= (2)

z + 𝜁 − 𝜕t1

(︁
2𝜕t0 + D(z) + D(𝜁)

)︁
F ,

where

D(z) =
∑︁
k≥1

z−k

k
𝜕tk .
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The differential equations are obtained by expanding these
equation in powers of z , 𝜁.
For example, the first two equations of the hierarchy are⎧⎨⎩

6F 2
11 + 3F22 − 4F13 = 12e4F00

2F03 + 4F 3
01 + 6F01F11 − 6F01F02 = 3F12.

(3)

Here and below we use the short-hand notation
Fmn ≡ 𝜕tm𝜕tnF .
The dispersionless KP equation written in the Hirota form

6F 2
11 + 3F22 − 4F13 = 0
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Elliptic parametrization

It was shown (V.A., A.Zabrodin) that equations (1), (2), when
rewritten in an elliptic parametrization in terms of Jacobi’s
theta-functions 𝜃a(u, 𝜏), assume a nice and suggestive form:

(z−1 − 𝜁−1)e(𝜕t0+D(z))(𝜕t0+D(𝜁))F =
𝜃1(u(z)−u(𝜁), 𝜏)

𝜃4(u(z)−u(𝜁), 𝜏)
. (4)

Here the function u(z) is defined by

e𝜕t0 (𝜕t0+D(z))F = z
𝜃1(u(z), 𝜏)

𝜃4(u(z), 𝜏)
. (5)

The modular parameter 𝜏 is a dynamical variable: 𝜏 = 𝜏(t).
In what follows we will use the differential operator

∇(z) = 𝜕t0 + D(z). (6)
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Take the log of (4)

log
(︀
z−1
1 − z−1

2
)︀
+∇(z1)∇(z2)F = log

𝜃1(u(z1)−u(z2))

𝜃4(u(z1)−u(z2))
. (7)

Introduce the function

S(u, 𝜏) := log
𝜃1(u, 𝜏)

𝜃4(u, 𝜏)
, (8)

Let’s take 𝜕t0

𝜕t0∇(z1)∇(z2)F = 𝜕t0 log
𝜃1(u(z1)−u(z2))

𝜃4(u(z1)−u(z2))
. (9)

We get the equation

∇(z1)S(u(z2)|𝜏) = 𝜕t0S(u(z1)− u(z2)|𝜏). (10)
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1-variable reductions

We are looking for solutions of the hierarchy such that u(z , t)
and 𝜏(t) depend on the times through a single variable
𝜆 = 𝜆(t).
Our goal is to characterize the class of functions u(z , 𝜆), 𝜏(𝜆)
that are consistent with the structure of the hierarchy and can
be used for one-variable reductions.
It was shown that such one-variable reductions are classified by
solutions of a differential equation which is an elliptic analogue
of the famous Löwner equation– Goluzin-Komatu equation:

4𝜋i 𝜕𝜆u(z , 𝜆) =
[︁
− 𝜁1

(︁
u(z , 𝜆)+𝜉(𝜆), 𝜏

2

)︁
+ 𝜁1

(︁
𝜉(𝜆), 𝜏

2

)︁]︁𝜕𝜏
𝜕𝜆

,

(11)
We use notation 𝜁a(u, 𝜏) := 𝜕u log 𝜃a(u, 𝜏)

𝜉(𝜆) is an arbitrary (continuous) function of 𝜆 (the “driving
function”).

The formulas simplify a bit if we choose 𝜆 = 𝜏 .
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The system of reduced equations and their solution.

In order to complete the description of one-variable reductions, we
should derive the equation satisfied by 𝜏(t) and find its solution.

Here we use the expansion

S(u(z) + 𝜉) = S(𝜉) +
∑︁
k≥1

z−k

k
Bk(𝜉),

which defines the functions Bk(u) = Bk(u|𝜏) and

S ′(u(z) + 𝜉)

S ′(𝜉)
= 1+

∑︁
k≥1

z−k

k
𝜑k(𝜉(𝜏)|𝜏) (12)

In terms of these functions, the equations of the reduced
hierarchy are as follows:

𝜕𝜏

𝜕tk
= 𝜑k(𝜉(𝜏)|𝜏)

𝜕𝜏

𝜕t0
, 𝜑k(𝜉(𝜏)|𝜏) :=

B ′
k(𝜉(𝜏)|𝜏)

S ′(𝜉(𝜏)|𝜏)
, k ≥ 1.

(13)
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The system of reduced equations and their solution.

The common solution to these equations can be written in the
hodograph form:

∞∑︁
k=1

tk𝜑k(𝜉(𝜏)|𝜏) = Φ(𝜏), (14)

where Φ(𝜏) is an arbitrary function of 𝜏 .
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One-variable reduction, summary

Start with equation of the dispersionless DKP hierarchy.

∇(z1)S(u(z2)|𝜏) = 𝜕t0S(u(z1)− u(z2)|𝜏).

Consider one-variable reductions: 𝜏(t), u(z , t) = u(z , 𝜏(t)).
Find the consistency condition for one-variable reductions
(annulus Loewner (Goluzin-Komatu) equation).

4𝜋i 𝜕𝜏u(z , 𝜆) = − 𝜁1

(︁
u(z , 𝜆)+𝜉(𝜆), 𝜏

2

)︁
+ 𝜁1

(︁
𝜉(𝜆), 𝜏

2

)︁
,

(15)
Find the common solution of the system of reduced equations

𝜕𝜏

𝜕tk
= 𝜑k(𝜉(𝜏)|𝜏)

𝜕𝜏

𝜕t0

in hodograph form
∞∑︁
k=1

tk𝜑k(𝜉(𝜏)|𝜏) = Φ(𝜏), (16)
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N-variable reductions

We study diagonal N-variable reductions of the dDKP
hierarchy when u depends on the times through N real
variables 𝜆j .
The starting point is the system of N elliptic Löwner equations
which characterize the dependence of u(z) on the variables 𝜆j :
{𝜆i} = {𝜆1, . . . , 𝜆N}

4𝜋i 𝜕𝜆j
u(z , {𝜆i}) =

[︁
− 𝜁1

(︁
u+𝜉j ,

𝜏
2

)︁
+ 𝜁1

(︁
𝜉j ,

𝜏
2

)︁]︁ 𝜕𝜏

𝜕𝜆j
,

(17)
𝜉j and 𝜏 are functions of {𝜆i}: 𝜉j = 𝜉j({𝜆i})
𝜏 = 𝜏({𝜆i}).
We assume that 𝜉j are real-valued functions.
Their compatibility condition is expressed as the elliptic
Gibbons-Tsarev system
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The Gibbons-Tsarev system

The Gibbons-Tsarev system is the compatibility condition for the
system of elliptic Löwner equations:

𝜕u

𝜕𝜆j
=

1
4𝜋i

(︁
−𝜁1

(︁
u + 𝜉j ,

𝜏

2

)︁
+ 𝜁1

(︁
𝜉j ,

𝜏

2

)︁)︁ 𝜕𝜏

𝜕𝜆j
. (18)

The compatibility condition is

Fjk(u) :=
𝜕

𝜕𝜆j

𝜕u

𝜕𝜆k
− 𝜕

𝜕𝜆k

𝜕u

𝜕𝜆j
= 0.

The left hand side is of the form

Fjk(u) = F
(1)
jk

𝜕𝜉k
𝜕𝜆j

𝜕𝜏

𝜕𝜆k
−F

(1)
kj

𝜕𝜉j
𝜕𝜆k

𝜕𝜏

𝜕𝜆j
+F

(2)
jk

𝜕2𝜏

𝜕𝜆j𝜕𝜆k
+Gjk

𝜕𝜏

𝜕𝜆j

𝜕𝜏

𝜕𝜆k
.

(19)
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The coefficients are:

F
(1)
jk =

1
4𝜋i

(︁
℘1(u + 𝜉k), 𝜏

′)− ℘1(𝜉k , 𝜏
′)
)︁
,

F
(2)
jk =

1
4𝜋i

(︁
−𝜁1(u+𝜉k , 𝜏

′)+𝜁1(𝜉k , 𝜏
′)+𝜁1(u+𝜉j , 𝜏

′)−𝜁1(𝜉j , 𝜏
′)
)︁
,

Gjk =
1

2(4𝜋i)2
(︁
℘′

1(u+𝜉k , 𝜏
′)−℘′

1(u+𝜉j , 𝜏
′)−℘′

1(𝜉k , 𝜏
′)+℘′

1(𝜉j , 𝜏
′)
)︁

+
1

(4𝜋i)2
(︁
𝜁1(u + 𝜉k , 𝜏

′)− 𝜁1(u + 𝜉j , 𝜏
′) + 𝜁1(𝜉j , 𝜏

′)
)︁
℘1(u + 𝜉k , 𝜏

′)

− 1
(4𝜋i)2

(︁
𝜁1(u + 𝜉j , 𝜏

′)− 𝜁1(u + 𝜉k , 𝜏
′) + 𝜁1(𝜉k , 𝜏

′)
)︁
℘1(u + 𝜉j , 𝜏

′)

+
1

(4𝜋i)2
(︁
−𝜁1(𝜉k , 𝜏

′)℘1(𝜉k , 𝜏
′) + 𝜁1(𝜉j , 𝜏

′)℘1(𝜉j , 𝜏
′)
)︁
,

where

℘a(x , 𝜏) = −𝜕x𝜁a(x , 𝜏),
℘′
a(x , 𝜏) = 𝜕x℘a(x , 𝜏).
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The Gibbons-Tsarev system

We get the elliptic analogue of the famous Gibbons-Tsarev
system:

𝜕𝜉k
𝜕𝜆j

=
1
4𝜋i

(︁
𝜁1(−𝜉k + 𝜉j , 𝜏

′)− 𝜁1(𝜉j , 𝜏
′)
)︁ 𝜕𝜏

𝜕𝜆j
, (20)

𝜕2𝜏

𝜕𝜆k𝜕𝜆j
=

1
2𝜋i

℘1(𝜉k − 𝜉j , 𝜏
′)

𝜕𝜏

𝜕𝜆k

𝜕𝜏

𝜕𝜆j
(21)

for all j = 1, . . . ,N, j ̸= k .
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The dependence of the 𝜆j ’s on t is given by the equation

∇(z)𝜆j =
S ′(u(z) + 𝜉j)

S ′(𝜉j)

𝜕𝜆j

𝜕t0
. (22)

This equation contains an infinite system of partial differential
equations of hydrodynamic type.
We introduce elliptic Faber functions Φk(u) via the expansion

S(u(z) + w) = S(w) +
∞∑︁
k=1

z−k

k
Φk(w) or

S ′(u(z) + w) = S ′(w) +
∞∑︁
k=1

z−k

k
Φ′
k(w) (23)

(here Φ′
k(w) = 𝜕wΦk(w)). Then the system (22) reads

𝜕𝜆j

𝜕tk
= 𝜑j ,k({𝜆i})

𝜕𝜆j

𝜕t0
, 𝜑j ,k =

Φ′
k(𝜉j)

S ′(𝜉j)
, (24)
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Generalized hodograph method

We have reduced the dDKP hierarchy to the system of elliptic
Löwner equations and the auxiliary equations

𝜕𝜆i (t)
𝜕tn

= 𝜑i ,n({𝜆j(t))
𝜕𝜆i (t)
𝜕t0

, (25)

where 𝜑i ,n are as in (24).
Step 1 to show that this system of equations is consistent.
Step 2 to show that it can be solved by Tsarev’s generalized
hodograph method.
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Generalized hodograph method

As is easy to see, the compatibility condition of the system
(25) is

𝜕𝜆j
𝜑i ,n

𝜑j ,n − 𝜑i ,n
=

𝜕𝜆j
𝜑i ,n′

𝜑j ,n′ − 𝜑i ,n′
for all i ̸= j , n, n′.

We should show that

Γij :=
𝜕𝜆j

𝜑i ,n

𝜑j ,n − 𝜑i ,n
(26)

does not depend on n.
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Generalized hodograph method

Consider the following system for Ri = Ri ({𝜆j}), i = 1, . . . ,N:

𝜕Ri

𝜕𝜆j
= Γij(Rj − Ri ), i , j = 1, . . . ,N, i ̸= j , (27)

where Γij is defined as

Γij = − 1
4𝜋i

S ′(𝜉j)

S ′(𝜉i )
S ′′(𝜉i − 𝜉j)

𝜕𝜏

𝜕𝜆j
. (28)

(when N = 1, the condition (27) is void).
Then the following holds:
(i) The system (27) is compatible.
(ii) Assume that Ri satisfy the system (27). If 𝜆i (t) is defined

implicitly by the hodograph relation

t0 +
∑︁
n≥1

𝜑i,n({𝜆j})tn = Ri ({𝜆j}), (29)

then 𝜆j(t) satisfy (25).
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Generalized hodograph method

In fact the compatibility conditions of the system (27) are

𝜕Γij
𝜕𝜆k

=
𝜕Γik
𝜕𝜆j

, i ̸= j ̸= k, (30)

(which is the Tsarev compatibility condition), together with

𝜕Γij
𝜕𝜆k

= ΓijΓjk + ΓikΓkj − ΓikΓij , i ̸= j ̸= k. (31)
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N-variable reductions, summary

We start with the system of N elliptic Löwner equations which
characterize the dependence of u(z) on the variables 𝜆j :

4𝜋i 𝜕𝜆j
u(z , {𝜆i}) =

[︁
− 𝜁1

(︁
u+𝜉j ,

𝜏
2

)︁
+ 𝜁1

(︁
𝜉j ,

𝜏
2

)︁]︁ 𝜕𝜏

𝜕𝜆j
,

(32)
Their compatibility condition is expressed as the elliptic
Gibbons-Tsarev system

𝜕𝜉k
𝜕𝜆j

=
1
4𝜋i

(︁
𝜁1(−𝜉k + 𝜉j , 𝜏

′)− 𝜁1(𝜉j , 𝜏
′)
)︁ 𝜕𝜏

𝜕𝜆j
, (33)

𝜕2𝜏

𝜕𝜆k𝜕𝜆j
=

1
2𝜋i

℘1(𝜉k − 𝜉j , 𝜏
′)

𝜕𝜏

𝜕𝜆k

𝜕𝜏

𝜕𝜆j
(34)

for all j = 1, . . . ,N, j ̸= k .
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N-variable reductions, summary

We have reduced the dDKP hierarchy to the system of elliptic
Löwner equations and the auxiliary equations

𝜕𝜆i (t)
𝜕tn

= 𝜑i ,n({𝜆j(t))
𝜕𝜆i (t)
𝜕t0

, (35)

where 𝜑i ,n are as in (24).
We show that

Γij :=
𝜕𝜆j

𝜑i ,n

𝜑j ,n − 𝜑i ,n
(36)

does not depend on n and this system of equations is
consistent.
We show that it can be solved by Tsarev’s generalized
hodograph method.

23 / 31



N-variable reductions, summary

For this we

Consider the following system for Ri = Ri ({𝜆j}), i = 1, . . . ,N:

𝜕Ri

𝜕𝜆j
= Γij(Rj − Ri ), i , j = 1, . . . ,N, i ̸= j , (37)

where Γij is defined as

Γij = − 1
4𝜋i

S ′(𝜉j)

S ′(𝜉i )
S ′′(𝜉i − 𝜉j)

𝜕𝜏

𝜕𝜆j
. (38)

Then we chek that :
(i) The system (37) is compatible:

𝜕Γij
𝜕𝜆k

=
𝜕Γik
𝜕𝜆j

, i ̸= j ̸= k, (39)

together with

𝜕Γij
𝜕𝜆k

= ΓijΓjk + ΓikΓkj − ΓikΓij , i ̸= j ̸= k. (40)
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N-variable reductions, summary

(ii) Assume that Ri satisfy the system (37). If 𝜆i (t) is defined
implicitly by the hodograph relation

t0 +
∑︁
n≥1

𝜑i ,n({𝜆j})tn = Ri ({𝜆j}), (41)

then 𝜆j(t) satisfy

𝜕𝜆i (t)
𝜕tn

= 𝜑i ,n({𝜆j(t))
𝜕𝜆i (t)
𝜕t0

, (42)

.

Thank you for attention!
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In what follows we use the differential operator

∇(z) = 𝜕t0 + D(z). (43)

Introducing the functions

p(z) = z − 𝜕t1∇(z)F , w(z) = z2e−2𝜕t0∇(z)F , (44)

we can rewrite equations (1), (2) in a more compact form

eD(z)D(𝜁)F

(︂
1− 1

w(z)w(𝜁)

)︂
=

p(z)− p(𝜁)

z − 𝜁
, (45)

e−D(z)D(𝜁)F+2𝜕2
t0
F w(z)− w(𝜁)

z − 𝜁
= p(z) + p(𝜁). (46)
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dDKP

Multiplying the two equations, we get the relation

p2(z)− e2F00
(︁
w(z) + w−1(z)

)︁
= p2(𝜁)− e2F00

(︁
w(𝜁) + w−1(𝜁)

)︁
from which it follows that p2(z)− e2F00

(︁
w(z) + w−1(z)

)︁
does not

depend on z (here and below we use the short-hand notation
Fmn = 𝜕2F

𝜕tm𝜕tn
). Tending z to infinity, we find that this expression is

equal to F02 − 2F11 − F 2
01. Therefore, we conclude that p(z),w(z)

satisfy the algebraic equation

p2(z) = R2
(︁
w(z) + w−1(z)

)︁
+ V , (47)

where
R = eF00 , V = F02 − 2F11 − F 2

01. (48)

are real numbers depending on the times (R is positive).

This equation defines an elliptic curve, with w , p being
algebraic functions on this curve.
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A natural further step is to uniformize the curve through
elliptic functions. We use the standard Jacobi theta functions
𝜃a(u) = 𝜃a(u, 𝜏) (a = 1, 2, 3, 4). The elliptic parametrization
of (47) is as follows:

w(z) =
𝜃2
4(u(z))

𝜃2
1(u(z))

, p(z) = 𝛾 𝜃2
4(0)

𝜃2(u(z)) 𝜃3(u(z))

𝜃1(u(z)) 𝜃4(u(z))
,

(49)
where u(z) = u(z , t) is some function of z , 𝛾 is a
z-independent factor.

R = 𝛾 𝜃2(0) 𝜃3(0) , V = −𝛾2
(︁
𝜃4
2(0) + 𝜃4

3(0)
)︁
. (50)

Here 𝛾 is an arbitrary real parameter but we will see that it is
a dynamical variable, as well as the modular parameter 𝜏 :
𝛾 = 𝛾(t), 𝜏 = 𝜏(t).
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It is convenient to normalize u(z) by the condition u(∞) = 0,
with the expansion around ∞ being

u(z , t) =
c1(t)
z

+
c2(t)
z2 + . . . (51)

with real coefficients ci .
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This identity allows us to represent the equations

eD(z)D(𝜁)F

(︂
1− 1

w(z)w(𝜁)

)︂
=

p(z)− p(𝜁)

z − 𝜁
, (52)

e−D(z)D(𝜁)F+2𝜕2
t0
F w(z)− w(𝜁)

z − 𝜁
= p(z) + p(𝜁). (53)

as a single equation:

(︀
z−1
1 − z−1

2
)︀
e∇(z1)∇(z2)F =

𝜃1(u(z1)−u(z2))

𝜃4(u(z1)−u(z2))
. (54)
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