
1

20th International Seminar
on High Energy Physics

QUARKS-2018

May 27 � June 2, 2018, Valday, Russia

K.V.Stepanyantz
Moscow State University, Physical Faculty, Department of

Theoretical Physics

Supersymmetry, quantum corrections, and
the higher derivative regularization

K.V.Stepanyantz Structure of quantum corrections in N = 1



2

Supersymmetry and the high energy physics

N = 1 supersymmetric theories are very interesting for both
phenomenology and theory. In supersymmetric extensions of the Standard
Model running of the gauge coupling constants agrees with the predictions
of Grand Uni�ed Theories. Increasing of the uni�cation mass essentially
increases the proton life time, τ ∼ M4

X . There are no quadratically
divergent quantum corrections to the Higgs mass.
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UV divergences in N = 1 D = 4 supersymmetric theories

1. There are no divergent quantum corrections to the superpotential.
2. The β-function of N = 1 SYM is related to the anomalous dimensions
of the matter super�elds by the so called NSVZ β-function,

β(α, λ) = −
α2
(

3C2 − T (R) + C(R)i
jγj

i(α, λ)/r
)

2π(1− C2α/2π)
, where

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA.

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277 (1986)
456; D.R.T.Jones, Phys.Lett. B 123 (1983) 45.

3. The three-point vertices with two lines of the Faddeev�Popov ghosts
and one line of the quantum gauge super�eld are �nite in all orders.
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NSVZ β-function and calculations in the lowest loops

The NSVZ β-function can be compared with the results of calculations in
the lowest orders of the perturbation theory. To make such calculations, a
theory should be regularized.
The dimensional regularization breaks the supersymmetry and is not
convenient for calculations in supersymmetric theories. That is why
supersymmetric theories are mostly regularized by the dimensional
reduction. However, the dimensional reduction is not self-consistent.
Using the dimensional reduction and DR-scheme a β-function of N = 1
supersymmetric theories was calculated up to the four-loop approximation:

L.V.Avdeev, O.V.Tarasov, Phys.Lett. B 112 (1982) 356; I.Jack, D.R.T.Jones,
C.G.North, Phys.Lett. B 386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander,
D.R.T.Jones, P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

The result coincides with the NSVZ β-function only in one- and two-loop
approximations. In the higher loops it is necessary to make a special tuning
of the coupling constant.
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Higher covariant derivative regularization

The higher covariant derivative regularization is a consistent regularization,
which does not break supersymmetry.

A.A.Slavnov, Nucl.Phys., B 31 (1971) 301; Theor.Math.Phys. 13 (1972) 1064.

In order to regularize a theory by higher derivatives it is necessary to
add a term with higher degrees of covariant derivatives. Then divergences
remain only in the one-loop approximation. These remaining divergences
are regularized by inserting the Pauli�Villars determinants.

A.A.Slavnov, Theor.Math.Phys. 33 (1977) 977.

The higher covariant derivative regularization can be generalized to the
N = 1 supersymmetric case

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B 268 (1986) 113.

In this talk we will mostly discuss quantum corrections in SUSY theories
regularized by higher covariant derivatives.
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Non-Abelian N = 1 supersymmetric gauge theories

Let us consider the (massless) non-AbelianN = 1 SYM theory with matter

S =
1

2e2
0

Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ φ∗i(e2F(V ))i

jφj

+
{1

6
λijk0

∫
d4x d2θ φiφjφk + c.c.

}
,

where the matter super�elds φi belong to a representation R of the gauge
group, and Yukawa couplings λ0 satisfy the condition

λijm0 (TA)m
k + λimk0 (TA)m

j + λmjk0 (TA)m
i = 0.

Note that usually F(V ) = V , but for calculating quantum corrections
we should use this function, see below. Then the supersymmetric gauge
super�eld strength is given by

Wa ≡
1

8
D̄2
(
e−2F(V )Dae

2F(V ))
)
.
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The background �eld method, regularization, and gauge �xing

Quantum-background splitting is made by the substitution

e2F(V ) → eΩ
+

e2F(V )eΩ.

The background super�eld V is de�ned by e2V = eΩ
+

eΩ.
We choose the higher derivative term

SΛ =
1

2e2
0

Re tr

∫
d4x d2θ eΩW ae−Ω

[
R
(
− ∇̄

2∇2

16Λ2

)
− 1
]
Adj

eΩWae
−Ω

+
1

4

∫
d4x d4θ φ+eΩ

+

e2F(V )
[
F
(
− ∇̄

2∇2

16Λ2

)
− 1
]
eΩφ

and the gauge �xing term

Sgf = − 1

16ξ0e2
0

tr

∫
d4x d4θ∇2V K

(
− ∇̄2∇2

16Λ2

)
Adj

∇̄2V,

where the regulators R, F , and K have a rapid growth at in�nity.
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Ghost Lagrangian and BRST invariance

Actions for the Faddeev�Popov and Nielsen�Kallosh ghosts have the form

SFP =
1

2

∫
d4x d4θ

∂F−1(Ṽ )A

∂Ṽ B

∣∣∣∣
Ṽ=F(V )

(
eΩc̄e−Ω + e−Ω

+

c̄+eΩ
+
)A

×
{( F(V )

1− e2F(V )

)
Adj

(
e−Ω

+

c+eΩ
+
)

+
( F(V )

1− e−2F(V )

)
Adj

(
eΩce−Ω

)}B

SNK =
1

2e2
0

tr

∫
d4x d4θ b+

[
eΩ

+

K
(
− ∇̄2∇2

16Λ2

)
eΩ
]
Adj

b.

The total action of the gauge �xed theory is invariant under the BRST
transformations and the background gauge transformations.
Below we will see that the quantum gauge super�eld V is renormalized
nonlinearly. Parameters describing this nonlinear renormalization are
included into the function F(V ). Calculating quantum corrections in the
lowest loops in the Feynman gauge it is possible to set F(V ) = V .
However, we will demonstrate that the nonlinear renormalization of the
quantum gauge super�eld is very essential.
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Renormalization

In our notation the renormalization constants are de�ned by the equations

1

α0
=
Zα
α

;
1

ξ0
=
Zξ
ξ

; V = VR; c̄c = ZcZ
−1
α c̄RcR;

b =
√
ZbbR; V = ZV Z

−1/2
α VR + nonlinear terms;

φi = (
√
Zφ)i

j(φR)j ; λijk = λmnp0 (Zλ)m
i(Zλ)n

j(Zλ)p
k.

The subscript R denotes renormalized super�elds, α, λ, and ξ are the
renormalized coupling constant, the Yukawa couplings, and the gauge
parameter, respectively.
It is possible to impose the following constrains to these renormalization
constants:

(Zλ)i
j = (

√
Zφ)i

j ; Zξ = Z−2
V ; Zb = Z−1

α .
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Non-renormalization of the vertices with two ghost legs and one leg of the

quantum gauge super�eld

The three-point vertices with two ghost legs and a single leg of the quantum
gauge super�eld are �nite in all orders

K.S., Nucl.Phys. B909 (2016) 316.

There are 4 such vertices, c̄ V c, c̄+V c, c̄ V c+, and c̄+V c+.
They have the same renormalization constant Z

−1/2
α ZcZV . Therefore, the

above statement can be rewritten as

d

d ln Λ
(Z−1/2

α ZcZV ) = 0.

In the one-loop approximation this has �rst been noted in the paper

S.S.Aleshin, A.E.Kazantsev, M.B.Skopsov, K.S., JHEP 1605 (2016) 014.

Consequently, there is a subtraction scheme in which

−1

2
lnZα + lnZc + lnZV = 0.

The Green functions of the structure c̄ V nc are divergent for n 6= 1.
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One-loop calculation: two-point ghost Green function

In the Euclidean space after the Wick rotation (for F(V ) = V )

Gc(p) = 1 + e2
0C2

∫
d4k

(2π)4

( ξ0
Kk
− 1

Rk

)(
− 1

6k4
+

1

2k2(k + p)2

− p2

2k4(k + p)2

)
+O(e4

0, e
2
0λ

2
0),

where Rk ≡ R(k2/Λ) and Kk ≡ K(k2/Λ2).
We see that this function is divergent in the ultraviolet region (at in�nite
Λ).

γc(α0, λ0) =
d lnGc
d ln Λ

∣∣∣∣
p=0;α,λ=const

= −α0C2(1− ξ0)

6π
+O(α2

0, α0λ
2
0).
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One-loop calculation: three-point gauge-ghost Green functions

ie0

4
fABC

∫
d4θ

d4p

(2π)4

d4q

(2π)4
c̄∗A(θ, p+ q)

(
f(p, q)∂2Π1/2V

B(θ,−p)

+Fµ(p, q)(γµ)ȧ
bDbD̄

ȧV B(θ,−p) + F (p, q)V B(θ,−p)
)
cC(θ,−q);

ie0

4
fABC

∫
d4θ

d4p

(2π)4

d4q

(2π)4
c̄∗A(θ, p+ q)F̃ (p, q)V B(θ,−p)c∗C(θ,−q).
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One-loop calculation: the functions F and F̃

Calculating these diagrams gives

F (p, q) = 1 +
e20C2

4

∫
d4k

(2π)4

{
− (q + p)2

Rkk2(k + p)2(k − q)2
− ξ0 p

2

Kkk2(k + q)2(k + q + p)2

+
ξ0 q

2

Kkk2(k + p)2(k + q + p)2
+

(
ξ0
Kk

− 1

Rk

)(
− 2(q + p)2

k4(k + q + p)2
+

2

k2(k + q + p)2

− 1

k2(k + q)2
− 1

k2(k + p)2

)}
+O(α2

0, α0λ
2
0).

F̃ (p, q) = 1 − e20C2

4

∫
d4k

(2π)4

{ p2

Rkk2(k + q)2(k + q + p)2
+

ξ0 (q + p)2

Kkk2(k − p)2(k + q)2

+
ξ0 q

2

Kkk2(k + p)2(k + q + p)2
+

2ξ0
Kkk2(k + p)2

− 2ξ0
Kkk2(k + q + p)2

+

(
ξ0
Kk

− 1

Rk

)
×
(

2q2

k4(k + q)2
+

1

k2(k + q + p)2
− 1

k2(k + q)2

)}
+O(α2

0, α0λ
2
0).

We see that these expressions are �nite in the ultraviolet region.
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Renormalization group functions de�ned in terms of the bare couplings

We will de�ne RGFs in terms of the bare couplings by the equations

β(α0, λ0) ≡ dα0

d ln Λ
;

(γφ)i
j(α0, λ0) ≡ −d ln(Zφ)i

j(α, λ,Λ/µ)

d ln Λ
;

γV (α0, λ0) ≡ −d lnZV (α, λ,Λ/µ)

d ln Λ
;

γc(α0, λ0) ≡ −d lnZc(α, λ,Λ/µ)

d ln Λ
.

where the di�erentiation is made at �xed values of α and λijk.
These renormalization group functions are
1. scheme independent at a �xed regularization;
2. depend on a regularization;
2. satisfy the NSVZ relation in all orders for N = 1 SQED with Nf �avors,
regularized by higher derivatives.

K.V.Stepanyantz Structure of quantum corrections in N = 1
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New form of the NSVZ β-function

The NSVZ β-function can be equivalently rewritten in the form

β(α0, λ0)

α2
0

= −3C2 − T (R) + C(R)i
j(γφ)j

i(α0, λ0)/r

2π
+
C2

2π
· β(α0, λ0)

α0
.

Let us express the β-function in the right hand side in terms of the
renormalization constant Zα:

β(α0, λ0) =
dα0(α, λ,Λ/µ)

d ln Λ

∣∣∣
α,λ=const

= −α0
d lnZα
d ln Λ

∣∣∣
α,λ=const

.

Then, using the identity d(Z
−1/2
α ZV Zc)/d ln Λ = 0 we obtain

β(α0, λ0) = −2α0
d ln(ZcZV )

d ln Λ

∣∣∣
α,λ=const

= 2α0

(
γc(α0, λ0)+γV (α0, λ0)

)
,

where γc and γV are anomalous dimensions of the Faddeev�Popov ghosts
and of the quantum gauge super�eld (de�ned in terms of the bare coupling
constants), respectively.

K.V.Stepanyantz Structure of quantum corrections in N = 1
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New form of the NSVZ β-function and its graphical interpretation

Substituting this expression into the right hand side of the NSVZ relation
we obtain

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γφ)j

i(α0, λ0)/r
)
.

From this form of the NSVZ β-function we see that the matter super�elds
and ghosts similarly contribute to the right hand side.

The graphical interpretation is similar to the Abelian case

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445.

K.V.Stepanyantz Structure of quantum corrections in N = 1
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Renormalization group functions de�ned in terms of the renormalized

couplings

RGFs are de�ned in terms of the renormalized couplings by the equations

β̃(α, λ) ≡ dα

d lnµ
;

(γ̃φ)i
j(α, λ) ≡ d ln(Zφ)i

j(α0, λ0,Λ/µ)

d lnµ
;

γ̃V (α, λ) ≡ d lnZV (α0, λ0,Λ/µ)

d lnµ
;

γ̃c(α, λ) ≡ d lnZc(α0, λ0,Λ/µ)

d lnµ
.

where the di�erentiation is made at �xed values of α0 and λijk0 .
These renormalization group functions are
1. scheme and regularization dependent;
2. satisfy the NSVZ relation only for a special renormalization prescription,
called the NSVZ scheme.

K.V.Stepanyantz Structure of quantum corrections in N = 1
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The NSVZ scheme in the non-Abelian case

The RGFs de�ned in terms of the renormalized coupling constant are
scheme dependent and satisfy the NSVZ relation only in a certain
subtraction scheme. Similarly to

A.L.Kataev and K.S., Nucl.Phys. B875 (2013) 459; Phys.Lett. B730 (2014) 184.

we see that in the non-Abelian case RGFs de�ned in terms of the bare
coupling constant coincide with ones de�ned in terms of the renormalized
coupling constants if the boundary conditions

Zα(α, λ, x0) = 1; (Zφ)i
j(α, λ, x0) = δi

j ; Zc(α, λ, x0) = 1,

where x0 is a �xed value of ln Λ/µ, are imposed on the renormalization

constants. We also assume that ZV = Z
1/2
α Z−1

c .
For x0 = 0 only powers of ln Λ/µ are included into the renormalization
constants. This is very similar to the minimal subtraction scheme. That is
why we will call this scheme Higher Derivatives + Minimal Subtractions
of Logarithms (HD+MSL). Possibly,

HD+MSL=NSVZ

K.V.Stepanyantz Structure of quantum corrections in N = 1
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Three-loop terms containing the Yukawa couplings

To verify the above results we consider the three-loop terms containing the
Yukawa couplings. They correspond to the graphs

(1) (2) (3) (4) (5)

V.Yu.Shakhmanov, K.S., Nucl.Phys., B920, (2017), 345;
A.E.Kazantsev, V.Yu.Shakhmanov, K.S., JHEP 1804 (2018) 130.

Attaching two external lines of the background gauge super�eld by all
possible ways we obtain (a large number of) the three-loop superdiagrams
contributing to the β-function.
From the other side, cutting internal lines in these graphs we obtain various
two-loop contributions to the anomalous dimensions of the quantum
gauge super�eld and of the matter super�elds. For other supergraphs
contributions to the anomalous dimension of the Faddeev�Popov ghosts
are also possible.

K.V.Stepanyantz Structure of quantum corrections in N = 1
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Graphical form of the NSVZ relation

−→
(1.1)

−→
(2.1) (2.2) (2.3)

→





(3.1) (3.2) (3.3)

(3.4) (3.5)

−→
(4.1) (4.2) (4.3) (4.4)

−→
(5.1) (5.2)
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Veri�cation of the new NSVZ relation

Expressions for all graphs are given by integrals of double total derivatives.
This allows to calculate one of the loops integrals analytically and (at the
level of loop integrals) obtain the relation

∆A

(β(α0, λ0)

α2
0

)
=

1

π
C2∆AγV (α0, λ0)− 1

2πr
C(R)i

j(∆Aγφ)j
i(α0, λ0),

which has been checked for all considered graphs.
For example, the terms quartic in the Yukawa couplings have the form

∆β(α0, λ0)

α2
0

= −2π

r
C(R)i

j d

d ln Λ

∫
d4k

(2π)4
d4q

(2π)4
λimn0 λ∗0jmn

∂

∂qµ

∂

∂qµ

×
( 1

k2Fk q2Fq (q + k)2Fq+k

)
+

4π

r
C(R)i

j d

d ln Λ

∫
d4k

(2π)4
d4l

(2π)4
d4q

(2π)4

×

(
λiab0 λ∗0kabλ

kcd
0 λ∗0jcd

( ∂

∂kµ

∂

∂kµ
− ∂

∂qµ

∂

∂qµ

)
+ 2λiab0 λ∗0jacλ

cde
0 λ∗0bde

∂

∂qµ

∂

∂qµ

)

× 1

k2F 2
k q

2Fq (q + k)2Fq+k l2Fl (l + k)2Fl+k
= − 1

2πr
C(R)i

j∆γφ(λ0)j
i.
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Explicit form of RGFs de�ned in terms of the bare couplings

For the higher derivative regulators F (x) = 1 +xn; R(x) = 1 +xm the integrals

have been calculated:

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)

)
− 1

2πr
C(R)j

i

(
1

4π2
λ∗0imnλ

jmn
0 +

α0

8π3
λ∗0imn

×λjmn0 C2 −
α0

8π3
λ∗0lmnλ

jmn
0 C(R)i

l
(

1 − 1

n

)
+

α0

4π3
λ∗0imnλ

jml
0 C(R)l

n
(

1 +
1

n

)
− 1

16π4
λ∗0iacλ

jab
0 λ∗0bdeλ

cde
0

)
+O(α2

0λ
2
0, α0λ

4
0, λ

6
0) + terms without the Yukawa

couplings;

(γφ)i
j(α0, λ0) = −α0

π
C(R)i

j +
1

4π2
λ∗0imnλ

jmn
0 − α0

8π3
λ∗0lmnλ

jmn
0 C(R)i

l
(

1 − 1

n

)
+
α0

4π3
λ∗0imnλ

jml
0 C(R)l

n
(

1 +
1

n

)
− 1

16π4
λ∗0iacλ

jab
0 λ∗0bdeλ

cde
0 +O(α2

0, α0λ
4
0, λ

6
0);

γV (α0, λ0) = −α0

4π

(
3C2 − T (R)

)
− α0

16π3r
λ∗0jmnλ

imn
0 C(R)i

j +O(α2
0, α0λ

4
0).
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RGFs de�ned in terms of the renormalized couplings

RGFs de�ned in terms of the renormalized couplings are

β̃(α, λ)

α2
= − 1

2π

(
3C2 − T (R)

)
− 1

2πr
C(R)j

i

(
1

4π2
λ∗imnλ

jmn +
α

8π3
λ∗imnλ

jmnC2

+
α

4π3
λ∗lmnλ

jmnC(R)i
l
[
b2 − g11 −

1

2

(
1 − 1

n

)]
+

α

2π3
λ∗imnλ

jmlC(R)l
n
[
b2 − g11

+
1

2

(
1 +

1

n

)]
− 1

8π4
λ∗iacλ

jabλ∗bdeλ
cde
[
b2 − g12 +

1

2

]
+

1

16π4
λ∗iabλ

kabλ∗kcdλ
jcd

×
[
g12 − b2

])
+O(α2λ2, αλ4, λ6) + terms without the Yukawa couplings;

(γ̃φ)i
j(α, λ) = −α

π
C(R)i

j +
1

4π2
λ∗imnλ

jmn +
α

4π3
λ∗lmnλ

jmnC(R)i
l
[
g12 − g11

−1

2

(
1 − 1

n

)]
+

α

2π3
λ∗imnλ

jmlC(R)l
n
[
g12 − g11 +

1

2

(
1 +

1

n

)]
− 1

16π4
λ∗iacλ

jab

λ∗bdeλ
cde +O(α2, αλ4, λ6);

γ̃V (α, λ) = − α

4π

(
3C2 − T (R)

)
− α

16π3r
λ∗jmnλ

imnC(R)i
j +O(α2, αλ4).
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The NSVZ scheme in the non-Abelian case

From the above results we see that the new form of the NSVZ relation

β̃(α, λ)

α2
= − 1

2π

(
3C2 − T (R)− 2C2γ̃c(α, λ)

−2C2γ̃V (α, λ) + C(R)i
j(γ̃φ)j

i(α, λ)/r
)

is not valid for RGFs de�ned in terms of the renormalized couplings
for a general renormalization prescription. However, in the case of
using the HD+MSL prescription (that is the Higher covariant Derivative
regularization supplemented by Minimal Subtractions of Logarithms) for
which

g11 = 0; g12 = 0; b2 = 0

the new form of the NSVZ relation is really valid.
The original form of the NSVZ relation is also valid in this case.
Thus, for the considered class of superdiagrams

HD + MSL = NSVZ.

K.V.Stepanyantz Structure of quantum corrections in N = 1
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NSVZ relation and the Faddeev�Popov ghosts

However, the terms containing the ghost anomalous dimension γc in the
equation

β̃(α, λ)

α2
= − 1

2π

(
3C2 − T (R)− 2C2γ̃c(α, λ)− 2C2γ̃V (α, λ)

+C(R)i
j
(
γ̃φ
)
j
i(α, λ)/r

)

have been veri�ed only for the two-loop β-function and the one-loop
anomalous dimensions

V.Yu.Shakhmanov, K.S., Phys.Lett. B 776 (2018) 417.

However, a nontrivial check can be obtain only by comparing the two-loop
ghost anomalous dimension and the three-loop β-function, because only
stating from this approximation the scheme dependence becomes essential.
That is here we describe the calculation of the two-loop anomalous
dimension of the Faddeev�Popov ghosts.
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Two-loop renormalization of the Faddeev�Popov ghosts

The two-loop anomalous dimension of the Faddeev�Popov ghosts is
contributed to by the superdiagrams

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

where the gray circle denotes insertion of the one-loop polarization operator
calculated in

A.E.Kazantsev, M.B.Skoptsov, K.S., Mod.Phys.Lett. A 32 (2017) no.36, 1750194.
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Two-loop ghost anomalous dimension de�ned in terms of the bare couplings

The ghost anomalous dimension can be obtained from the function Gc
which is constructed according to the prescription

Γ(2)
c =

1

4

∫
d4p

(2π)4
d4θ

(
c∗A(−p, θ)c̄A(p, θ) + c̄∗A(−p, θ)cA(p, θ)

)

×Gc(α0, λ0, ξ0, y0, . . . ,Λ/p).

In terms of bare couplings the ghost anomalous dimension is de�ned by

γc(α0, λ0, ξ0, y0) ≡ −d lnZc
d ln Λ

∣∣∣∣
α,λ,ξ,y=const

=
d lnGc
d ln Λ

∣∣∣∣
α,λ,ξ,y=const; p=0

.

Note that for calculating this expression in the considered approximation
we have to take into account nonlinear terms inside the function F(V ),

FA(V ) = V A + e2
0 y0G

ABCDV BV CV D + . . ., where

GABCD =
1

6

(
fAKLfBLMfCMNfDNK+permutations of B, C, and D

)
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Nonlinear renormalization of the quantum gauge super�eld

The nonlinear renormalization of the quantum gauge super�eld V was �rst
discussed in

O.Piguet and K.Sibold, Nucl.Phys. B 196 (1982) 428; B 197 (1982) 257; 272; B 248

(1984) 301.

Explicit calculations (for gauge super�eld four-point Green function)

J.W.Juer and D.Storey, Phys.Lett. 119B (1982) 125; Nucl.Phys. B 216 (1983) 185.

demonstrated that the nonlinear terms really appear. In our notation this
implies that

y0 = y +
α

90π

(
(2 + 3ξ) ln

Λ

µ
+ k1

)
+ . . .

Also we need the one-loop renormalization of some other parameters:

α0 = α− α2

2π

[
3C2

(
ln

Λ

µ
+ b11

)
− T (R)

(
ln

Λ

µ
+ b12

)]
+O(α3, α2λ2);

α0ξ0 = αξ +
α2C2

3π

(
ξ(ξ − 1) ln

Λ

µ
+ x1

)
+O(α3, α2λ2).
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Two-loop ghost anomalous dimension de�ned in terms of the bare couplings

The result for the ghost anomalous dimension de�ned in terms of the bare
coupling constant has been obtained in

A.E. Kazantsev, M.D. Kuzmichev, N.P. Meshcheriakov, S.V. Novgorodtsev, I.E.
Shirokov, M.B. Skoptsov, K.S., arXiv:1805.03686 [hep-th]

for the higher derivative regulators R(x) = K(x) = 1+xm; F (x) = 1+xn:

γc(α0, λ0, ξ0, y0) =
α0C2(ξ0 − 1)

6π
− 5α0y0C

2
2 (ξ0 − 1)

4π
− α2

0C
2
2

24π2

(
ξ2
0 − 1

)

−α
2
0C

2
2

4π2

(
ln aϕ + 1

)
+
α2

0C2T (R)

12π2

(
ln a+ 1

)
+ . . . ,

where a ≡ M/Λ; aϕ ≡ Mϕ/Λ. Note that we keep the one-loop y-
dependence, but omit the dependence on the nonlinearity parameters in
the two-loop terms. (In the two-loop approximation it is necessary to take
into account other parameters describing the nonlinear renormalization.)
In agreement with the general arguments the result is scheme-independent.
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Two-loop ghost anomalous dimension de�ned in terms of the renormalized

couplings

In terms of the renormalized couplings the ghost anomalous dimension is
de�ned as

γ̃c(α, λ, ξ, y) =
d lnZc
dlnµ

∣∣∣∣
α0,λ0,ξ0,y0=const

.

The result is (h1 is �nite constant inside Zc)

γ̃c(α, λ, ξ, y) =
αC2(ξ − 1)

6π
− 5αyC2

2 (ξ − 1)

4π
− α2C2

2

4π2

(
ln aϕ + 1 + 6h1

−b11

)
+
α2C2T (R)

12π2

(
ln a+ 1 + 6h1 − b12

)
− α2C2

2

24π2

(
ξ2 − 1

)
+
α2C2

2

72π2

×
(

4x1 − (ξ − 1)k1

)
+ . . .

We see that the result is scheme dependent. Also it can be easily veri�ed
that in the HD+MSL scheme (for which b11 = b12 = 0, h1 = 0, k1 = 0,
x1 = 0) it coincides with γc after a formal substitution

α→ α0; ξ → ξ0; y → y0.
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Conclusion

X In the non-Abelian case the perturbative calculations seem to produce

the new form of the NSVZ equation which relates the β-function to the

anomalous dimensions of the quantum gauge super�eld, of the Faddeev�

Popov ghosts, and of the chiral matter super�elds.

X The new form of the NSVZ relation can be obtained from the non-

renormalization theorem for the triple ghost-gauge vertices and has the

same graphical interpretation as in the Abelian case.

X For RGFs de�ned in terms of the bare couplings the NSVZ relation is

possibly valid with the higher derivatives regularization in an arbitrary

subtraction scheme. Then the NSVZ scheme for RGFs de�ned in terms

of the renormalized couplings is produced by the HD+MSL prescription.

X Renormalization of supersymmetric theories in higher orders requires the

nonlinear renormalization of the quantum gauge super�eld.
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Thank you for the attention!
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