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Dark matter is out there
• Galactic rotation curves

credit: SPARC database http://astroweb.cwru.edu/SPARC/
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Dark matter is out there
• Galactic rotation curves

• Dynamics of clusters

credit: SPARC database http://astroweb.cwru.edu/SPARC/

- hot gas (X-ray observations)

- total mass (reconstructed 
from gravitational lensing)

http://astroweb.cwru.edu/SPARC/


Dark matter is out there
• Cosmic microwave background and large-scale structure

Planck Collaboration: Cosmological parameters

Table 3. Parameters of the base⇤CDM cosmology computed from the 2015 baseline Planck likelihoods, illustrating the consistency
of parameters determined from the temperature and polarization spectra at high multipoles. Column [1] uses the TT spectra at low
and high multipoles and is the same as column [6] of Table 1. Columns [2] and [3] use only the T E and EE spectra at high
multipoles, and only polarization at low multipoles. Column [4] uses the full likelihood. The last column lists the deviations of the
cosmological parameters determined from the Planck TT+lowP and Planck TT,TE,EE+lowP likelihoods.

Parameter [1] Planck TT+lowP [2] Planck TE+lowP [3] Planck EE+lowP [4] Planck TT,TE,EE+lowP ([1] � [4])/�[1]

⌦bh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02228 ± 0.00025 0.0240 ± 0.0013 0.02225 ± 0.00016 �0.1
⌦ch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1187 ± 0.0021 0.1150+0.0048

�0.0055 0.1198 ± 0.0015 0.0
100✓MC . . . . . . . . 1.04085 ± 0.00047 1.04094 ± 0.00051 1.03988 ± 0.00094 1.04077 ± 0.00032 0.2
⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.053 ± 0.019 0.059+0.022

�0.019 0.079 ± 0.017 �0.1
ln(1010As) . . . . . . 3.089 ± 0.036 3.031 ± 0.041 3.066+0.046

�0.041 3.094 ± 0.034 �0.1
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.965 ± 0.012 0.973 ± 0.016 0.9645 ± 0.0049 0.2
H0 . . . . . . . . . . . 67.31 ± 0.96 67.73 ± 0.92 70.2 ± 3.0 67.27 ± 0.66 0.0
⌦m . . . . . . . . . . . 0.315 ± 0.013 0.300 ± 0.012 0.286+0.027

�0.038 0.3156 ± 0.0091 0.0
�8 . . . . . . . . . . . . 0.829 ± 0.014 0.802 ± 0.018 0.796 ± 0.024 0.831 ± 0.013 0.0
109Ase�2⌧ . . . . . . 1.880 ± 0.014 1.865 ± 0.019 1.907 ± 0.027 1.882 ± 0.012 �0.1

likelihood. The residuals in both T E and EE are similar to those
from Plik. The main di↵erence can be seen at low multipoles
in the EE spectrum, where CamSpec shows a higher dispersion,
consistent with the error model, though there are several high
points at ` ⇡ 200 corresponding to the minimum in the EE spec-
trum, which may be caused by small errors in the subtraction
of polarized Galactic emission using 353 GHz as a foreground
template (and there are also di↵erences in the covariance matri-
ces at high multipoles caused by di↵erences in the methods used
in CamSpec and Plik to estimate noise). Generally, cosmolog-
ical parameters determined from the CamSpec likelihood have
smaller formal errors than those from Plik because there are no
nuisance parameters describing polarized Galactic foregrounds
in CamSpec.

3.3.3. Consistency of cosmological parameters from the TT ,
T E, and EE spectra

The consistency between parameters of the base ⇤CDM model
determined from the Plik temperature and polarization spec-
tra are summarized in Table 3 and in Fig. 6. As pointed out by
Zaldarriaga et al. (1997) and Galli et al. (2014), precision mea-
surements of the CMB polarization spectra have the potential to
constrain cosmological parameters to higher accuracy than mea-
surements of the TT spectra because the acoustic peaks are nar-
rower in polarization and unresolved foreground contributions at
high multipoles are much lower in polarization than in temper-
ature. The entries in Table 3 show that cosmological parameters
that do not depend strongly on ⌧ are consistent between the TT
and T E spectra, to within typically 0.5� or better. Furthermore,
the cosmological parameters derived from the T E spectra have
comparable errors to the TT parameters. None of the conclu-
sions in this paper would change in any significant way were we
to use the T E parameters in place of the TT parameters. The
consistency of the cosmological parameters for base ⇤CDM be-
tween temperature and polarization therefore gives added confi-
dence that Planck parameters are insensitive to the specific de-
tails of the foreground model that we have used to correct the
TT spectra. The EE parameters are also typically within about
1� of the TT parameters, though because the EE spectra from
Planck are noisier than the TT spectra, the errors on the EE pa-
rameters are significantly larger than those from TT . However,
both the T E and EE likelihoods give lower values of ⌧, As and
�8, by over 1� compared to the TT solutions. Noticee that the

T E and EE entries in Table 3 do not use any information from
the temperature in the low-multipole likelihood. The tendency
for higher values of �8, As, and ⌧ in the Planck TT+lowP solu-
tion is driven, in part, by the temperature power spectrum at low
multipoles.

Columns [4] and [5] of Table 3 compare the parameters
of the Planck TT likelihood with the full Planck TT,T E, EE
likelihood. These are in agreement, shifting by less than 0.2�.
Although we have emphasized the presence of systematic ef-
fects in the Planck polarization spectra, which are not accounted
for in the errors quoted in column [4] of Table 3, the consis-
tency of the Planck TT and Planck TT,T E, EE parameters pro-
vides strong evidence that residual systematics in the polariza-
tion spectra have little impact on the scientific conclusions in this
paper. The consistency of the base ⇤CDM parameters from tem-
perature and polarization is illustrated graphically in Fig. 6. As a
rough rule-of-thumb, for base ⇤CDM, or extensions to ⇤CDM
with spatially flat geometry, using the full Planck TT,T E, EE
likelihood produces improvements in cosmological parameters
of about the same size as adding BAO to the Planck TT+lowP
likelihood.

3.4. Constraints on the reionization optical depth parameter ⌧

The reionization optical depth parameter ⌧ provides an important
constraint on models of early galaxy evolution and star forma-
tion. The evolution of the inter-galactic Ly↵ opacity measured in
the spectra of quasars can be used to set limits on the epoch of
reionization (Gunn & Peterson 1965). The most recent measure-
ments suggest that the reionization of the inter-galactic medium
was largely complete by a redshift z ⇡ 6 (Fan et al. 2006). The
steep decline in the space density of Ly↵-emitting galaxies over
the redshift range 6 <⇠ z <⇠ 8 also implies a low redshift of reion-
ization (Choudhury et al. 2015). As a reference, for the Planck
parameters listed in Table 3, instantaneous reionization at red-
shift z = 7 results in an optical depth of ⌧ = 0.048.

The optical depth ⌧ can also be constrained from observa-
tions of the CMB. The WMAP9 results of Bennett et al. (2013)
give ⌧ = 0.089 ± 0.014, corresponding to an instantaneous red-
shift of reionization zre = 10.6 ± 1.1. The WMAP constraint
comes mainly from the EE spectrum in the multipole range
` = 2–6. It has been argued (e.g., Robertson et al. 2013, and ref-
erences therein) that the high optical depth reported by WMAP
cannot be produced by galaxies seen in deep redshift surveys,
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• Theoretical pedigree:  pseudo-Goldstone boson
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•                          from CMB and LSS : otherwise too much 
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Kobayashi et al. (2017)
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Challenges to particle CDM at sub-kpc scales ?
14 Oh et al.

Fig. 5.— Upper-left panel: The (DM only) rotation curves (small dots) of the 21 LITTLE THINGS (including 3 THINGS galaxies)
for which Spitzer 3.6µm image is available. These are all scaled with respect to the rotation velocity V0.3 at R0.3 where the logarithmic
slope of the rotation curve is dlogV/dlogR = 0.3 as described in Hayashi & Navarro (2006). The ‘⇥’ symbol represents the median values of
the rotation curves in each 0.1R/R0.3 bin. The error bars show the 1� scatter. Lower-left panel: The scaled rotation curves of the seven
THINGS, and the two simulated dwarf galaxies (DG1 and DG2 in Governato et al. 2010) which are overplotted to the median values of
the LITTLE THINGS rotation curves. The grey solid and black solid lines with small dots indicate the CDM NFW dark matter rotation
curves with V200 which is > 90 km s�1 and < 90 km s�1, respectively. Right panels: The corresponding dark matter density profiles
derived using the scaled rotation curves in the left panels. The grey (V200 > 90 km s�1) and black solid lines with small dots (V200 < 90
km s�1) represent the CDM NFW models with the inner density slope ↵⇠�1.0. See Section 4 for more details.

profiles. This is much like the THINGS dwarf galaxies,
and the simulated dwarfs (DG1 and DG2) with baryonic
feedback processes as shown in the lower-right panel of
Fig. 5.
We also measure the inner density slopes ↵ of the DM

density profiles to quantify the cuspiness of the central
DM distribution. This yields a more quantitative com-
parison between the observations and simulations. As
shown in the figures in the Appendix (e.g., panel (f) of

Fig. A.3), we perform a least squares fit (dotted lines) to
the inner data points (grey dots) within a ‘break radius’.
As described in de Blok & Bosma (2002; see also Oh
et al. 2011b), we determine a break radius of a DM den-
sity profile where the slope changes most rapidly in the
inner region of the profile. Following de Blok & Bosma
(2002), we adopt the mean di↵erence between the slopes
which are measured including the first data point out-
side the break-radius and excluding the data point at the
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- cores vs. cusps

- missing satellites

- too big to fail

from Oh et al., arXiv:1502.01281

perhaps are explained by baryonic physics



Dynamics of ULDM in the Newtonian limit 

slowly varying amplitude
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Probing ULDM with
galactic rotation curves



ULDM in the halo

Figure 2: A slice of density field of ψDM simulation on various scales at zzz=== 000...111. This scaled sequence
(each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the
haloes. Distinct solitonic cores with radius ∼ 0.3− 1.6 kpc are found within each collapsed halo. The
density shown here spans over nine orders of magnitude, from 10−1 to 108 (normalized to the cosmic mean
density). The color map scales logarithmically, with cyan corresponding to density ! 10.

graphic processing unit acceleration, improving per-
formance by almost two orders of magnitude21 (see
Supplementary Section 1 for details).

Fig. 1 demonstrates that despite the completely
different calculations employed, the pattern of fil-
aments and voids generated by a conventional N-
body particle ΛCDM simulation is remarkably in-
distinguishable from the wavelike ΛψDM for the
same linear power spectrum (see Supplementary Fig.
S2). Here Λ represents the cosmological constant.
This agreement is desirable given the success of stan-
dard ΛCDM in describing the statistics of large scale
structure. To examine the wave nature that distin-
guishes ψDM from CDM on small scales, we res-
imulate with a very high maximum resolution of
60 pc for a 2 Mpc comoving box, so that the dens-
est objects formed of " 300 pc size are well re-
solved with ∼ 103 grids. A slice through this box
is shown in Fig. 2, revealing fine interference fringes
defining long filaments, with tangential fringes near

the boundaries of virialized objects, where the de
Broglie wavelengths depend on the local velocity of
matter. An unexpected feature of our ψDM simula-
tions is the generation of prominent dense coherent
standing waves of dark matter in the center of every
gravitational bound object, forming a flat core with
a sharp boundary (Figs. 2 and 3). These dark matter
cores grow as material is accreted and are surrounded
by virialized haloes of material with fine-scale, large-
amplitude cellular interference, which continuously
fluctuates in density and velocity generating quan-
tum and turbulent pressure support against gravity.

The central density profiles of all our collapsed
cores fit well with the stable soliton solution of the
Schrödinger-Poisson equation, as shown in Fig. 3
(see also Supplementary Section 2 and Fig. S3). On
the other hand, except for the lightest halo which
has just formed and is not yet virialized, the outer
profiles of other haloes possess a steepening loga-
rithmic slope, similar to the Navarro-Frenk-White

3

Schive, Chiueh, 
Broadhurst, 
arXiv: 1406.6586
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M⊙. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M⊙ are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-

Schive, Chiueh, Boardhurst,  
arXiv:1407.7762

soliton



Properties of the soliton 

3

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  
satisfies the Schroedinger-Poisson (SP) equations [32]

i@t = � 1

2m
r2 + m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the ansatz3

 (x, t) =

✓
mMplp

4⇡

◆
e�i�mt�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�2 (6)

⇡ 4.1 ⇥ 1014

⇣ m

10�22 eV

⌘
2

�2 M�/pc3.

The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2

r (r�) = 2r (� � �)�, (7)

@2

r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�

1

(r), with �
1

. A numerical calculation gives [4, 5, 8]

�
1

⇡ �0.69, (9)

and the solution is plotted in Fig. 1. The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79 ⇥ 1012

⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

3 Mpl = 1/
p
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FIG. 1. Profile of the “standard” �

1
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Soliton - host halo relation
5

where Mh is the virial mass of the host halo. As noted
in [6–8], Eqs. (29-30) are an excellent numerical fit for a
soliton ��. The mass of this soliton is

M ⇡ 1.4 ⇥ 109

⇣ m

10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�, (31)

so its � parameter is

� ⇡ 4.9 ⇥ 10�4

✓
Mh

1012 M�

◆ 1
3

. (32)

Note that Eq. (31) is applicable only as long as the halo
exceeds a minimal mass,

Mh,min

⇠ 5.2 ⇥ 107

✓
m

10�22eV

◆�3/2

M� . (33)

Smaller mass halos would be dominated by the soliton.
Ref. [7] showed that Eq. (31) is consistent with the

relation,

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to the data. Ref. [7] gave
a heuristic argument, pointing out that Eq. (34) iden-
tifies the soliton scale radius (chosen as the core radius
xc in [7]) with the inverse velocity dispersion in the host
halo, in qualitative agreement with a wave-like “uncer-
tainty principle”.

However, there is another way to express Eq. (34). The
core mass of a �� soliton is related to its total mass via
Mc� ⇡ 0.236M�. Thus, using Eq. (25) we have an an-

alytic relation Mc� ⇡ 1.02
⇣

|E�|
M�

⌘ 1
2 M2

pl

m . This allows us

to rephrase the empirical Eq. (34) by a more intuitive
(though equally empirical) expression:

E

M

����
soliton

⇡ E

M

����
halo

. (35)

Therefore, the soliton–host halo relation in the simula-
tions of Ref. [6, 7] can be summarised by the statement
that the energy per unit mass of the soliton matches the
energy per unit mass of the host halo.

B. Soliton vs. host halo: the simulations of
Ref. [13]

The simulations of Ref. [13] pointed to an empirical
scaling relation between the soliton mass M and the total
energy of the ULDM distribution in the simulation box,
Eh,

M

(M2

pl/m)
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However, this is just Eq. (23), if we replace the halo en-
ergy Eh by the energy of the soliton. Because the central
density profile found in [13] was a �� soliton, to a good
approximation, it must be the case that the total energy
of the halo in the simulations of [13] was dominated by
the central soliton contribution. This situation is un-
likely to hold for realistic cosmological host halos with
Mh significantly above Mh,min

.
How could this have happened? The initial conditions

in the simulations of [13] were a collection of N solitons,
which were then allowed to merge. It appears that these
initial conditions were constructed such that one initial
state soliton – the soliton of initially largest mass – grew
to absorb the entire energy of the system. Di↵erently
from Ref. [7] that considered initial conditions of N iden-
tical initial solitons, the simulations of [13] initiated their
N solitons with a random flat distribution in soliton ra-
dius. Such distribution would be skewed towards large
soliton energy because E� / x�3

c� . Considering the ini-
tial condition set-up as explained in [13], we find that
the most massive initial state soliton typically needed to
grow in mass by only a factor of 1.5-2, to absorb the
entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soliton
and the halo, implied by Eq. (35). Halos in [6, 7] attained
masses up to two orders of magnitude larger than the
central soliton mass, meaning their halo energy was two
orders of magnitude larger than the energy of the soliton.

C. Comments

As far as we can currently determine, Eq. (35) may
indeed reflect a realistic soliton–host halo relation for
large enough cosmological halos. In the following sec-
tions, we take a leap of faith and assume that the sim-
ulations of [6, 7] produced the correct scaling relation.
We stress that Eq. (35) is an empirical result, and was
only tested in [6, 7] for host halo masses ranging from
⇠ 108 M� to ⇠ 1011 M�. Our key numerical analysis
will concern systems in this range of mass.

We defer a theoretical study of the origin of Eq. (35)
to future work. Here we give only a few comments. We
stress that the discussion in the rest of this section does
not a↵ect any of our results.

For a soliton, E/M = �/3. On the other hand, �m can
be associated with the chemical potential of ULDM par-
ticles in the soliton (see e.g. [34] and references therein).
This may appear to hint that Eq. (35) corresponds to
thermodynamic equilibrium between the ULDM parti-
cles in the host halo and in the soliton. However, there
is some evidence to the contrary from simulations.

Ref. [29] simulated ULDM, adding collisionless point
particles (“stars”). The stars aggregated dynamically in
a cuspy profile, resulting in a more massive soliton com-
pared to the pure ULDM simulations [6, 7] with a given
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where Mh is the virial mass of the host halo. As noted
in [6–8], Eqs. (29-30) are an excellent numerical fit for a
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Smaller mass halos would be dominated by the soliton.
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to the data. Ref. [7] gave
a heuristic argument, pointing out that Eq. (34) iden-
tifies the soliton scale radius (chosen as the core radius
xc in [7]) with the inverse velocity dispersion in the host
halo, in qualitative agreement with a wave-like “uncer-
tainty principle”.

However, there is another way to express Eq. (34). The
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tions of Ref. [6, 7] can be summarised by the statement
that the energy per unit mass of the soliton matches the
energy per unit mass of the host halo.
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However, this is just Eq. (23), if we replace the halo en-
ergy Eh by the energy of the soliton. Because the central
density profile found in [13] was a �� soliton, to a good
approximation, it must be the case that the total energy
of the halo in the simulations of [13] was dominated by
the central soliton contribution. This situation is un-
likely to hold for realistic cosmological host halos with
Mh significantly above Mh,min

.
How could this have happened? The initial conditions

in the simulations of [13] were a collection of N solitons,
which were then allowed to merge. It appears that these
initial conditions were constructed such that one initial
state soliton – the soliton of initially largest mass – grew
to absorb the entire energy of the system. Di↵erently
from Ref. [7] that considered initial conditions of N iden-
tical initial solitons, the simulations of [13] initiated their
N solitons with a random flat distribution in soliton ra-
dius. Such distribution would be skewed towards large
soliton energy because E� / x�3

c� . Considering the ini-
tial condition set-up as explained in [13], we find that
the most massive initial state soliton typically needed to
grow in mass by only a factor of 1.5-2, to absorb the
entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soliton
and the halo, implied by Eq. (35). Halos in [6, 7] attained
masses up to two orders of magnitude larger than the
central soliton mass, meaning their halo energy was two
orders of magnitude larger than the energy of the soliton.

C. Comments

As far as we can currently determine, Eq. (35) may
indeed reflect a realistic soliton–host halo relation for
large enough cosmological halos. In the following sec-
tions, we take a leap of faith and assume that the sim-
ulations of [6, 7] produced the correct scaling relation.
We stress that Eq. (35) is an empirical result, and was
only tested in [6, 7] for host halo masses ranging from
⇠ 108 M� to ⇠ 1011 M�. Our key numerical analysis
will concern systems in this range of mass.

We defer a theoretical study of the origin of Eq. (35)
to future work. Here we give only a few comments. We
stress that the discussion in the rest of this section does
not a↵ect any of our results.

For a soliton, E/M = �/3. On the other hand, �m can
be associated with the chemical potential of ULDM par-
ticles in the soliton (see e.g. [34] and references therein).
This may appear to hint that Eq. (35) corresponds to
thermodynamic equilibrium between the ULDM parti-
cles in the host halo and in the soliton. However, there
is some evidence to the contrary from simulations.

Ref. [29] simulated ULDM, adding collisionless point
particles (“stars”). The stars aggregated dynamically in
a cuspy profile, resulting in a more massive soliton com-
pared to the pure ULDM simulations [6, 7] with a given
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where Mh is the virial mass of the host halo. As noted
in [6–8], Eqs. (29-30) are an excellent numerical fit for a
soliton ��. The mass of this soliton is

M ⇡ 1.4 ⇥ 109

⇣ m

10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�, (31)

so its � parameter is

� ⇡ 4.9 ⇥ 10�4

✓
Mh

1012 M�

◆ 1
3

. (32)

Note that Eq. (31) is applicable only as long as the halo
exceeds a minimal mass,

Mh,min

⇠ 5.2 ⇥ 107

✓
m

10�22eV

◆�3/2

M� . (33)

Smaller mass halos would be dominated by the soliton.
Ref. [7] showed that Eq. (31) is consistent with the

relation,

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh
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Therefore, the soliton–host halo relation in the simula-
tions of Ref. [6, 7] can be summarised by the statement
that the energy per unit mass of the soliton matches the
energy per unit mass of the host halo.

B. Soliton vs. host halo: the simulations of
Ref. [13]

The simulations of Ref. [13] pointed to an empirical
scaling relation between the soliton mass M and the total
energy of the ULDM distribution in the simulation box,
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However, this is just Eq. (23), if we replace the halo en-
ergy Eh by the energy of the soliton. Because the central
density profile found in [13] was a �� soliton, to a good
approximation, it must be the case that the total energy
of the halo in the simulations of [13] was dominated by
the central soliton contribution. This situation is un-
likely to hold for realistic cosmological host halos with
Mh significantly above Mh,min

.
How could this have happened? The initial conditions

in the simulations of [13] were a collection of N solitons,
which were then allowed to merge. It appears that these
initial conditions were constructed such that one initial
state soliton – the soliton of initially largest mass – grew
to absorb the entire energy of the system. Di↵erently
from Ref. [7] that considered initial conditions of N iden-
tical initial solitons, the simulations of [13] initiated their
N solitons with a random flat distribution in soliton ra-
dius. Such distribution would be skewed towards large
soliton energy because E� / x�3

c� . Considering the ini-
tial condition set-up as explained in [13], we find that
the most massive initial state soliton typically needed to
grow in mass by only a factor of 1.5-2, to absorb the
entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soliton
and the halo, implied by Eq. (35). Halos in [6, 7] attained
masses up to two orders of magnitude larger than the
central soliton mass, meaning their halo energy was two
orders of magnitude larger than the energy of the soliton.

C. Comments

As far as we can currently determine, Eq. (35) may
indeed reflect a realistic soliton–host halo relation for
large enough cosmological halos. In the following sec-
tions, we take a leap of faith and assume that the sim-
ulations of [6, 7] produced the correct scaling relation.
We stress that Eq. (35) is an empirical result, and was
only tested in [6, 7] for host halo masses ranging from
⇠ 108 M� to ⇠ 1011 M�. Our key numerical analysis
will concern systems in this range of mass.

We defer a theoretical study of the origin of Eq. (35)
to future work. Here we give only a few comments. We
stress that the discussion in the rest of this section does
not a↵ect any of our results.

For a soliton, E/M = �/3. On the other hand, �m can
be associated with the chemical potential of ULDM par-
ticles in the soliton (see e.g. [34] and references therein).
This may appear to hint that Eq. (35) corresponds to
thermodynamic equilibrium between the ULDM parti-
cles in the host halo and in the soliton. However, there
is some evidence to the contrary from simulations.

Ref. [29] simulated ULDM, adding collisionless point
particles (“stars”). The stars aggregated dynamically in
a cuspy profile, resulting in a more massive soliton com-
pared to the pure ULDM simulations [6, 7] with a given
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host halo mass. Testing the reversibility of the system,
Ref. [29] adiabatically “turned o↵” the stars after the
initial system virialised. When eliminating the stars, the
soliton+halo system did not relax back to Eq. (35). In-
stead, the excess ULDM mass that was contained in the
soliton in the presence of stars remained captured in the
soliton, and did not return to the host halo. The final
state of the system was not described by Eq. (35): the
soliton ended up containing larger (negative) E/M than
the halo, and larger mass compared with Eq. (31).

IV. SOLITON-HOST HALO RELATION AND
GALACTIC ROTATION CURVES

As we have seen, the soliton–host halo relation found in
the simulations of [6, 7] can be summarised by Eq. (35),
equating the energy per unit mass of the virialised host
halo to that in the soliton component. For a virialised
system, the energy per unit mass maps to kinetic energy
density: in particular, the characteristic circular velocity
(or, up to an O(1) geometrical factor, the velocity dis-
persion) of test particles in the halo and in the soliton
should match. The peak circular velocity of the soli-
ton, given by Eqs. (27-28), occurs deep in the inner part,
x < 1 kpc, of the galaxy; while the peak circular velocity
of an NFW-like halo occurs far out at x ⇠ 2 Rs, with
Rs the NFW characteristic radius, of order 10 kpc for a
MW-like galaxy. Thus, if the scaling derived from the
simulations of [6, 7] is correct, ULDM predicts that the
peak rotation velocity in the outskirts of a halo should
approximately repeat itself in the deep inner region. We
now discuss this result quantitatively.

Consider a halo with an NFW density profile

⇢NFW (x) =
⇢c�c

x
Rs

⇣
1 + x

Rs

⌘
2

, (37)

where

⇢c(z) =
3H2(z)
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3

c3

ln(1 + c) � c
1+c

. (38)

The profile has two parameters: the radius Rs and the
concentration parameter c = R

200

/Rs, where R
200

is the
radius where the average density of the halo equals 200
times the cosmological critical density, roughly indicating
the virial radius of the halo. The gravitational potential
of the halo is

�NFW (x) = �4⇡G⇢c�cR
3

s

x
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✓
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◆
. (39)

Near the origin, x ⌧ Rs, �NFW is approximately con-
stant, �NFW (x ⌧ Rs) ⇡ �h, and is related to the mass
of the halo, M

200

= 200⇢c
4⇡
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c3R3
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We can estimate the energy per unit mass of the viri-
alised halo by
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. (41)

This gives
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4
�h, (42)

where

c̃ =
c � ln(1 + c)

(1 + c) ln(1 + c) � c
. (43)

Typical values of the concentration parameter are in the
range c ⇠ 5 ÷ 30 [35]. In this range, c̃ varies between
c̃ ⇠ 0.55 ÷ 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10 ÷ 20 [36].)

Plugging Eq. (42) into the soliton–host halo relation
Eq. (35), the scaling parameter � is fixed as

�0.23 �2 ⇡ E�
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4
�h, (44)

which implies5
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with

f(c) = 0.54
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.

Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 ÷ 1.1 for c = 5 ÷ 30. It agrees parametrically with
the simulation result, Eq. (31) (including the redshift de-
pendence, which we have suppressed in Eq. (31)). It also
agrees quantitatively to about 20%; to see this, we need
to account for the slightly di↵erent definition of the halo
mass Mh, used in [7], and our M

200

. We do this compar-
ison in App. A.

Consider the rotation velocity curve of an ULDM
galaxy satisfying Eq. (35). The NFW rotation curve is
given by

V 2

circ,h(x)

V 2

circ,h(Rs)
=

2(1 + ⇠) ln(1 + ⇠) � 2⇠

⇠(1 + ⇠)(ln(4) � 1)
, ⇠ ⌘ x

Rs
. (46)

5 In the numerical estimates we use H
0

= 70 km/s/Mpc for the
present-day Hubble constant.
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stead, the excess ULDM mass that was contained in the
soliton in the presence of stars remained captured in the
soliton, and did not return to the host halo. The final
state of the system was not described by Eq. (35): the
soliton ended up containing larger (negative) E/M than
the halo, and larger mass compared with Eq. (31).
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 ÷ 1.1 for c = 5 ÷ 30. It agrees parametrically with
the simulation result, Eq. (31) (including the redshift de-
pendence, which we have suppressed in Eq. (31)). It also
agrees quantitatively to about 20%; to see this, we need
to account for the slightly di↵erent definition of the halo
mass Mh, used in [7], and our M

200

. We do this compar-
ison in App. A.

Consider the rotation velocity curve of an ULDM
galaxy satisfying Eq. (35). The NFW rotation curve is
given by
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5 In the numerical estimates we use H
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This halo rotation curve peaks at x ⇡ 2.16 Rs with a
peak value

maxV
circ,h ⇡ 1.37 ⇥ 105(��h)

1
2 km/s. (47)

On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
of
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where we used Eq. (44) to fix � and Eq. (28) to relate it
to maxV

circ,�.
As anticipated in the beginning of this section, Eq. (35)

predicts approximately equal peak circular velocities for
the inner soliton component and for the host halo,
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independent of the particle mass m, independent of the
halo mass M

200

, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)

1
2 . Eq. (49) is plot-

ted in Fig. 3 as function of the concentration parameter.
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FIG. 3. Ratio between halo and soliton peak circular veloci-
ties as a function of the halo concentration.

While maxV
circ,� and the approximate equality

Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,

x
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10�22 eV

m
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maxV
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200 km/s

◆�1

pc. (50)

Fig. 4 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M
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= 1012 M� and 5 ⇥ 1010 M� on the top and

bottom panels, respectively. For larger m > 10�22 eV,
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smaller x according to Eq. (50), but would maintain its
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In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V

circ

(x) =
p

G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
form ⇢ ⇠ x�1. This would a↵ect the detailed shape of
the rotation curve in the intermediate region between the
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In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V
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(x) =
p

G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
form ⇢ ⇠ x�1. This would a↵ect the detailed shape of
the rotation curve in the intermediate region between the
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tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V
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(x) =
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G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
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In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V
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(x) =
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G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
form ⇢ ⇠ x�1. This would a↵ect the detailed shape of
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In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V
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(x) =
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G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
form ⇢ ⇠ x�1. This would a↵ect the detailed shape of
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of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample
includes, in particular, the galaxies shown in Figs. 7-10.

Our analysis is as follows. For each SPARC galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by M

gal

⇠ RV 2/G,
where R is the radial distance of the last (highest dis-
tance) data point in the rotation curve, and V the cor-
responding velocity. We keep only galaxies with M

gal

>

109

�
m/10�22 eV

��3/2

M�. We do this in order to limit
ourselves to galaxy masses that are comfortably above
the minimal halo mass (33). Our results are not sensi-
tive to the details of this mass cut. Of the 175 galaxies
in [28], 162 pass the M

gal

cut for m = 10�22 eV, and all
175 pass it for m = 10�21 eV.
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FIG. 7. Measured rotation curve of UGC 1281 superimposed
on the prediction from Eq. (49) following from the soliton–
host halo relation. The ULDM mass is m = 10�22 eV (upper
panel) and m = 10�21 eV (lower panel). The shaded band
accounts for the intrinsic scatter of the soliton–host halo re-
lation.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak ve-
locity, we search for the halo peak velocity restricting

to radial distance x > 3
�
m/10�22 eV

��1

kpc. (Galax-

ies with no data above x = 3
�
m/10�22 eV

��1

kpc
are discarded.) Our results are not sensitive to the

3
�
m/10�22 eV

��1

kpc halo criterion. This criterion
is only meant to make sure, that we are not confus-
ing the halo peak with a soliton peak, which would
bias our analysis. Defining the halo cut anywhere at

& 1
�
m/10�22 eV

��1

kpc guarantees that such confusion
is avoided.

Our first pass on the data includes only galaxies for
which the predicted soliton is resolved, namely, x

peak,�

from Eq. (50), with maxV
circ,� = maxV

circ,h, lies within
the rotation curve data. For these galaxies, we compute
from data the ratio

V
circ, obs

(x
peak,�)

maxV
circ,h

. (51)

Here, V
circ, obs

(x
peak,�) is the measured velocity at the

expected soliton peak position.
The results of this first pass on the data are shown in

Fig. 11. A total of 46 galaxies pass the resolved soliton
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FIG. 8. Same as Fig. 7 for UGC 4325.
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circ,h ⇡ 1.37 ⇥ 105(��h)

1
2 km/s. (47)

On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
of

maxV
circ,� ⇡ 1.51 ⇥ 105

✓
c̃

0.4

◆ 1
2

(��h)
1
2 km/s, (48)

where we used Eq. (44) to fix � and Eq. (28) to relate it
to maxV

circ,�.
As anticipated in the beginning of this section, Eq. (35)

predicts approximately equal peak circular velocities for
the inner soliton component and for the host halo,

maxV
circ,�

maxV
circ,h

⇡ 1.1

✓
c̃

0.4

◆ 1
2

, (49)

independent of the particle mass m, independent of the
halo mass M

200

, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)

1
2 . Eq. (49) is plot-

ted in Fig. 3 as function of the concentration parameter.
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FIG. 3. Ratio between halo and soliton peak circular veloci-
ties as a function of the halo concentration.

While maxV
circ,� and the approximate equality

Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,

x
peak,� ⇡ 191

✓
10�22 eV

m

◆✓
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circ,�

200 km/s

◆�1

pc. (50)

Fig. 4 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and

bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.
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FIG. 4. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo re-
lation Eq. (35) with m = 10�22 eV. Solid black, dot-dashed
orange, and dashed blue show V

circ

due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the upper and
lower panels, respectively.

In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V

circ

(x) =
p

G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
form ⇢ ⇠ x�1. This would a↵ect the detailed shape of
the rotation curve in the intermediate region between the

predictions              vs                 data
m = 10�22eV
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of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample
includes, in particular, the galaxies shown in Figs. 7-10.

Our analysis is as follows. For each SPARC galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by M

gal

⇠ RV 2/G,
where R is the radial distance of the last (highest dis-
tance) data point in the rotation curve, and V the cor-
responding velocity. We keep only galaxies with M

gal

>

109

�
m/10�22 eV

��3/2

M�. We do this in order to limit
ourselves to galaxy masses that are comfortably above
the minimal halo mass (33). Our results are not sensi-
tive to the details of this mass cut. Of the 175 galaxies
in [28], 162 pass the M

gal

cut for m = 10�22 eV, and all
175 pass it for m = 10�21 eV.
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FIG. 7. Measured rotation curve of UGC 1281 superimposed
on the prediction from Eq. (49) following from the soliton–
host halo relation. The ULDM mass is m = 10�22 eV (upper
panel) and m = 10�21 eV (lower panel). The shaded band
accounts for the intrinsic scatter of the soliton–host halo re-
lation.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak ve-
locity, we search for the halo peak velocity restricting

to radial distance x > 3
�
m/10�22 eV

��1

kpc. (Galax-

ies with no data above x = 3
�
m/10�22 eV

��1

kpc
are discarded.) Our results are not sensitive to the

3
�
m/10�22 eV

��1

kpc halo criterion. This criterion
is only meant to make sure, that we are not confus-
ing the halo peak with a soliton peak, which would
bias our analysis. Defining the halo cut anywhere at

& 1
�
m/10�22 eV

��1

kpc guarantees that such confusion
is avoided.

Our first pass on the data includes only galaxies for
which the predicted soliton is resolved, namely, x

peak,�

from Eq. (50), with maxV
circ,� = maxV

circ,h, lies within
the rotation curve data. For these galaxies, we compute
from data the ratio

V
circ, obs

(x
peak,�)

maxV
circ,h

. (51)

Here, V
circ, obs

(x
peak,�) is the measured velocity at the

expected soliton peak position.
The results of this first pass on the data are shown in

Fig. 11. A total of 46 galaxies pass the resolved soliton
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FIG. 8. Same as Fig. 7 for UGC 4325.
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Analyzing SPARC data
175 high resolution rotation curves
cuts:
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V (bar)
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V (DM)
circ,h
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with f
bar2DM

< 1, 0.5, we find 48 and 16 galaxies with
unresolved soliton, that can be added to the sample of
Fig. 11. No galaxy is added for f

bar2DM

< 0.33. For m =
10�21 eV, 16 and 5 galaxies are added with f

bar2DM

<
1, 0.5, and none for f

bar2DM

< 0.33.
In Figs. 11-12, vertical dashed line indicates the

soliton–host halo prediction. The shaded region shows
the range of the prediction, modifying the RHS of
Eq. (49) between 0.5 � 1.5, consistent with the scatter
seen in the simulations.

We conclude that the four galaxies in Figs. 7-10 are not
outliers: they are representative of a systematic discrep-
ancy, that would be di�cult to attribute to the scatter
seen in the simulations. If the soliton-host halo rela-
tion of [6, 7] is correct, then ULDM in the mass range
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FIG. 11. Distribution of SPARC galaxies [28] with respect
to the ratio of observed circular velocity at the soliton peak
to the maximal circular velocity of the halo. The vertical
dashed line shows the prediction for the mean implied by the
soliton-host halo relation and the shaded region accounts for
the intrinsic scatter in this relation. The ULDM mass is m =
10�22 eV (upper panel) and m = 10�21 eV (lower panel).
Red, blue, green histograms correspond to the cuts f

bar2DM

<

1, 0.5, 0.33, respectively. Only rotation curves with resolved
solitons are included (see the main text for details).

m ⇠ 10�22 eV to m ⇠ 10�21 eV is in tension with the
data.

We have limited our attention to the range m =
(10�22 ÷ 10�21) eV, for which we believe the results are
clear. We leave a detailed study of the precise exclusion
range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
careful analysis would be needed to draw a definitive con-
clusion. Note that in this range of m, ULDM ceases to
o↵er a solution to the small-scale puzzles of ⇤CDM (see,
e.g., review in [12]).
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FIG. 12. Same as Fig. 11, including galaxies with unresolved
solitons (see the main text).
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Conclusion:


ULDM with                                        

is disfavoured by rotation curves of disk galaxies      

m � (10�22 ÷ 10�21)eV

cannot play a role in solving small-scale 
problems of LambdaCDM     



Future: probing higher masses

14

computed holding their mass fixed by Eq. (31), but in-
cluding the e↵ects of baryons as we discuss below. An
NFW profile, fitted in Ref. [36] to r & 10 kpc SDSS data,
is shown in dashed black.
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FIG. 15. Spherically-averaged mass profile in the Milky Way,
vs. ULDM soliton contributions. See text for details.

We stress that the purpose of Fig. 15 is to illustrate the
possible signature of ULDM in the inner MW, and not for
statistical analyses of the MW mass distribution. Mod-
eling the inner MW is a complicated task. The measure-
ment of inner kinematics of the galaxy, below a few kpc,
is subject to large systematic uncertainties due, among
other issues, to the e↵ects of the Galactic bar and spiral
arm structures [51], which impact tangent-point velocity
measurements like those utilised in [52, 53]. Our simpli-
fied derivation of the spherically-averaged mass profile in
Fig. 15 combines many tracers with di↵erent systematics,
and accounts for none of these subtleties.

Ref. [54] analysed the MW central gravitational po-
tential using a large set of observational constraints. In
addition to the classical bulge and disc, Ref. [54] found
dynamical evidence for the presence of a mass compo-
nent of ⇠ 2 ⇥ 109 M� extending to ⇠ 250 pc. This mass
component is visible as a mass bump in Fig. 15 (see, e.g.
green data points extracted from [52]). Consistent with
comments in [6, 7], the bump is in tantalising agreement
with the soliton prediction of Eq. (31) for m = 10�22 eV
(blue shaded band).

Unfortunately, there are about a billion stars in there,
too: the bump in the mass profile at r ⇠ 200 pc has been
associated in the literature with the nuclear bulge (NB).
Ref. [55] fitted the NB mass and light by a dense disc of
stars, with mass density ⇢⇤ ⇠ 200 M�/pc3, scale hight
. 45 pc and scale radius ⇠ 230 pc. In all, the NB is
thought to contain (1.4± 0.6)⇥ 109 M� in stars, roughly
enough to match the dynamically inferred mass. Sub-
sequent kinematic detection supporting the stellar mass
and disc-like morphology of this component was given
in [56]. Microlensing analyses [57] lend further support

to the results of [54–56] down to r & 220 pc.
The photometrically-derived NB mass model of [55] is

superimposed as purple line in Fig. 15. We stress that
the photometric derivation is subject to large uncertain-
ties due to the need to correct for very strong extinction
and due to unknown stellar mass-to-light ratios. What
we learn from this photometric mass model, therefore, is
that stars could plausibly account for all of the kinemat-
ically inferred mass in this region.

Assuming that the NB is due to stars, we now use a
toy model of this mass distribution to see its e↵ect on
an ULDM soliton. We replace the disc-like morphology
of the NB in [55] by a spherical model with the same
radially averaged mass. The nominal model, containing
the NB and additional subleading components described
in [55], contains ⇠ 1.7 ⇥ 109 M� in stars inside of r =
300 pc. Adding a SMBH of MBH = 4.3 ⇥ 106 M� [38],
we calculate soliton solutions in this baryonic potential.

Fig. 16 shows the soliton mass as function of the �
parameter, for m = 10�22 eV. Green dashed line shows
the unperturbed M� vs. � relation. Solid, dashed, and
dotted black lines show the relation for the nominal NB
model and for two other models, obtained by scaling the
NB mass density by an over-all factor of 0.5 and 2, re-
spectively. For orientation, shaded blue band shows the
soliton mass predicted by Eq. (31) for a host halo with
mass Mh = (0.8 � 2) ⇥ 1012 M�.
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FIG. 16. Soliton mass vs. � parameter, accounting for the
spherically-averaged gravitational potential due to stars [55].
The ULDM particle mass is m = 10�22 eV. See text for more
details.

For M� & 3 MNB ⇠ 5 ⇥ 109 M�, the NB makes a
negligible impact on the soliton. For larger ratio of the
stellar to ULDM mass, M� . MNB , the NB becomes
important, contracting the soliton profile. For the MW,
this is the parametric region predicted by Eq. (31), im-
plying that the solitons would receive significant distor-
tion. In Fig. 15 we illustrated this e↵ect by presenting,
in shaded bands, the soliton mass profiles computed ac-
counting for the nominal NB model. We observe that
the solitons for m in the range (10�22 ÷ 10�19) eV are
expected to a↵ect the potential at an order unity level.
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ULDM in the halo

oscillation period:

coherence length:

coherence time:

slowly varying in space

Figure 2: A slice of density field of ψDM simulation on various scales at zzz=== 000...111. This scaled sequence
(each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the
haloes. Distinct solitonic cores with radius ∼ 0.3− 1.6 kpc are found within each collapsed halo. The
density shown here spans over nine orders of magnitude, from 10−1 to 108 (normalized to the cosmic mean
density). The color map scales logarithmically, with cyan corresponding to density ! 10.

graphic processing unit acceleration, improving per-
formance by almost two orders of magnitude21 (see
Supplementary Section 1 for details).

Fig. 1 demonstrates that despite the completely
different calculations employed, the pattern of fil-
aments and voids generated by a conventional N-
body particle ΛCDM simulation is remarkably in-
distinguishable from the wavelike ΛψDM for the
same linear power spectrum (see Supplementary Fig.
S2). Here Λ represents the cosmological constant.
This agreement is desirable given the success of stan-
dard ΛCDM in describing the statistics of large scale
structure. To examine the wave nature that distin-
guishes ψDM from CDM on small scales, we res-
imulate with a very high maximum resolution of
60 pc for a 2 Mpc comoving box, so that the dens-
est objects formed of " 300 pc size are well re-
solved with ∼ 103 grids. A slice through this box
is shown in Fig. 2, revealing fine interference fringes
defining long filaments, with tangential fringes near

the boundaries of virialized objects, where the de
Broglie wavelengths depend on the local velocity of
matter. An unexpected feature of our ψDM simula-
tions is the generation of prominent dense coherent
standing waves of dark matter in the center of every
gravitational bound object, forming a flat core with
a sharp boundary (Figs. 2 and 3). These dark matter
cores grow as material is accreted and are surrounded
by virialized haloes of material with fine-scale, large-
amplitude cellular interference, which continuously
fluctuates in density and velocity generating quan-
tum and turbulent pressure support against gravity.

The central density profiles of all our collapsed
cores fit well with the stable soliton solution of the
Schrödinger-Poisson equation, as shown in Fig. 3
(see also Supplementary Section 2 and Fig. S3). On
the other hand, except for the lightest halo which
has just formed and is not yet virialized, the outer
profiles of other haloes possess a steepening loga-
rithmic slope, similar to the Navarro-Frenk-White
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Oscillating pressure
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from (ij)-equation neglecting spatial gradients:
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ṙr̈ dt

Pb � |Eb|�3/2

resonance if

D.Lopez Nacir, D.Blas, S.S.  (2016)

�� � 2m� 2�N
Pb
� 2m
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binary orbital frequency, its e↵ect is resonantly amplified
and leads to a secular change in the orbital period that
can be searched for experimentally. We now proceed to
the quantitative discussion. We start with the case when
DM and ordinary matter interact only gravitationally.

ULDM interacting only through gravity The
energy-momentum of a free massive oscillating field (1)
corresponds to the density and pressure,

⇢DM =
m2

��2
0

2
, pDM = �⇢DM cos(2m�t+2⌥) . (2)

The latter generates an oscillating perturbation of the
metric. To find this we use the Newtonian gauge,

ds2 = �(1 + 2�)dt2 + (1� 2 )�ijdxidxj , (3)

and write down the trace of the (ij) Einstein equations,

6 ̈ + 2�(��  ) = 24⇡GpDM .

Neglecting the spatial gradients and using (2) we obtain,

 ̈ = �4⇡G⇢DM cos(2m�t + 2⌥) . (4)

This can be viewed as a standing scalar GW. Similarly
to the usual GW’s, it produces an extra relative accel-
eration between the bodies in a binary system. This is
conveniently written in the Fermi normal coordinates as-
sociated to the center of mass of the binary [32],

�r̈i = ��Ri
0j0r

j = � ̈ri , (5)

where ri is the vector connecting the two bodies and
�Ri

0j0 is the contribution of GW into the corresponding
components of the Riemann tensor. In the last equality
we have evaluated �Ri

0j0 in the conformal gauge (3) us-
ing the fact that at the linearized level it is coordinate
independent.

Next, we compute the change in the energy of the bi-
nary due to its interaction with ULDM during one orbital
period Pb,

�Eb = µ

Z Pb

0
ṙi�r̈idt

= 4⇡G⇢DMµ

Z Pb

0
ṙ(t)r(t) cos(2m�t + 2⌥)dt ,

where r is the distance between the bodies and µ ⌘
M1M2

M1+M2
is the reduced mass of the system. The energy

exchange is most e�cient when the orbital period is close
to an integer multiple of the period of metric oscillations.
Given that Pb / |Eb|�3/2, it leads to a secular drift of
the orbital period. Defining

�! = 2m� � 2⇡N/Pb , |�!| ⌧ 2m� , (6)

and using the standard formulas of the Keplerian me-
chanics we obtain the derivative of the period averaged

over time intervals Pb ⌧ �t ⌧ 2⇡/�!,

hṖbi = �6G⇢DMP 2
b

JN (Ne)
N

f(t) (7)

' �1.6⇥ 10�17

 
⇢DM

0.3 GeV
cm3

!✓
Pb

100 d

◆2
JN (Ne)

N
f(t) ,

where

f(t) = sin
�
�! t + 2m�t0 + 2⌥

�
,

JN (x) is the Bessel function, e is the orbital eccentricity,
and t0 is the time of the first periastron passage since
t = 0. In the second line of (7) we have normalized ⇢DM

to the local DM density ⇠ 0.3 GeV/cm3 in the neighbor-
hood of the Solar System. We observe that, depending
on the relative phase between the orbital motion and the
ULDM oscillations, the sign of hṖbi can be positive (de-
crease of the binary system energy) or negative (increase
of the energy). Furthermore, the sign alternates in time
with the period 2⇡/�! which can be used to discriminate
this e↵ect from other contributions into the measured Ṗb,
such as e.g. those due to the acceleration of the binary
with respect to the Solar System.

The expression (7) implies that the e↵ect vanishes for
circular orbits (e = 0) and grows with the orbital ec-
centricity. Besides, it is stronger for systems with large
orbital periods. These points are illustrated in Fig. 1.
We see that slow non-relativistic systems with orbital
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FIG. 1. Secular derivative of the orbital period given in
eq. (7) as a function of the dark matter mass. We have set
f(t) = �1 for the numerical estimate. Solid lines assume res-
onances for N = 1 (m� = ⇡/Pb), while dashed ones are for
N = 2 (m� = 2⇡/Pb). The corresponding orbital periods are
shown on the two top axes. The pink (lower) lines correspond
to ⇢DM = 0.3GeV/cm3 and e = 0.01, the blue lines are for
the same ⇢DM but e = 0.9, while the grey (upper) lines corre-
spond to ⇢DM = 10 GeV/cm3 and e = 0.9. The yellow band
on the left marks the regions m� . 2.3 ⇥ 10�23eV that can
be probed by future pulsar timing arrays [12].
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FIG. 1. Secular derivative of the orbital period given in
eq. (7) as a function of the dark matter mass. We have set
f(t) = �1 for the numerical estimate. Solid lines assume res-
onances for N = 1 (m� = ⇡/Pb), while dashed ones are for
N = 2 (m� = 2⇡/Pb). The corresponding orbital periods are
shown on the two top axes. The pink (lower) lines correspond
to ⇢DM = 0.3GeV/cm3 and e = 0.01, the blue lines are for
the same ⇢DM but e = 0.9, while the grey (upper) lines corre-
spond to ⇢DM = 10 GeV/cm3 and e = 0.9. The yellow band
on the left marks the regions m� . 2.3 ⇥ 10�23eV that can
be probed by future pulsar timing arrays [12].
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For now: Constraints on a direct coupling
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FIG. 2. Sensitivity of binary pulsar observations to the linear
coupling ⇤�1

1 between ULDM and ordinary matter on the ex-
ample of several known systems (see the indicated references
for their description). Black symbols are constraints derived
using the existing data on Ṗb; values above the symbols are
excluded. Filled orange symbols show the sensitivity that
can be achieved if Ṗb is measured with the accuracy 10�16.
Empty symbols correspond to resonances on higher harmon-
ics (N � 2). The colored regions of the ULDM parameter
space are excluded by PTA [13] (olive), Cassini test of gen-
eral relativity [42] (violet) and Cassini bound on stochastic
GW background [44] (red). Olive lines show future sensitiv-
ities of European Pulsar Timing Array (upper) and Square
Kilometer Array (lower) as estimated in [20].
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FIG. 3. Same as Fig. 2, but for the case of quadratically
coupled ULDM. There are no constraints on ⇤�1

2 from Solar
System tests of general relativity.

Limits on an ULDM-induced contribution into Ṗb in

the timing model of binary systems can be used to put
further bounds on the couplings ⇤�1

1,2. Taking the re-
ported error in the determination of intrinsic Ṗb for sev-
eral known systems as an upper limit on the ULDM-
induced contribution we obtain the constraints presented
in Figs. 2, 3. In deriving them we have set the oscillat-
ing factors in (10), (11) to one for the sake of the ar-
gument. One observes that they are competitive with
the existing bounds. In particular, the Hulse–Taylor
pulsar B1913+16 [52] provides the most sensitive probe
of the direct ULDM coupling for m� satisfying the ap-
propriate resonance condition. Whereas the systems
J1903+0327 [46] and J1748-2021B [47] give the strongest
constraints on the quadratic coupling ⇤�1

2 in the range of
m� from 2⇥10�22 eV to 2⇥10�21 eV. The situation will
further improve with the increase of precision in binary
pulsar timing. Note the interesting constraints on ULDM
with masses m� ⇠ 1019 ÷ 1018 eV that can be obtained
from fast binaries with the periods down to a few hours.
In the low-mass region binary pulsar observations can be
complementary to future PTA.

The precise values of the bounds from Figs. 2, 3 should
be taken with caution. First, we have set the sine factors
in (10), (11) to one, whereas their accidental suppression
if the phase happens to be close to an integer multiple
of ⇡ is not excluded. This option would be reliably ruled
out by studying an ensemble of systems separated by dis-
tances larger than the ULDM coherence length, which
would allow to average over the phase ⌥(x). At the mo-
ment such study is impossible due to the lack of statis-
tics. Second, in the case of quadratic coupling one should
take into account the screening e↵ect when relating the
bounds on ⇤2 from binary pulsars to the parameters in
the particle physics Lagrangian. Indeed, a quadratically
coupled scalar field acquires e↵ective mass m2

e↵ ⇠ ⇢/⇤2
2

inside an object with density ⇢. If the corresponding
Compton wavelength is shorter than the size of the ob-
ject, the field inside the object gets frozen at � = 0 and
only an outer layer of width m�1

e↵ interacts with ULDM.
This can degrade the bounds on ⇤�1

2 by a few orders of
magnitude compared to those shown on Fig. 3 [39].

A peculiarity of the binary pulsar constraints is that
every single system is sensitive to ULDM masses only in
a few narrow bands corresponding to resonances on the
first N . 10 harmonics. Requiring conservatively that
the system stays in resonance during the whole obser-
vational campaign yields an estimate of the band width
�m� ⇠ 5 ⇥ 10�23 eV/(years of observation). While this
is much smaller than the total mass range of interest,
O(103) binary systems with di↵erent periods expected to
be discovered by SKA [37] will allow for a good coverage.
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have in the absence of the interaction (i.e., when ↵
A

= 0.
See the footnote 1). Note that a non-vanishing velocity
of the BB a↵ects directly the dynamics of the binary
system. db:We can always work in the BB with
V = 0 at t = 0. The metric (13) stays the same

up to subleading corrections, e.g.  ̈V . As for
the R = 0, this condition is modified by the local
acceleration, but this is a small e↵ect. Thus, I
would say that we can take V = 0 to study the
dynamics of the binary.

III. THE PERTURBED KEPLERIAN PROBLEM

Let us derive the modifications to Keplerian orbits
from the terms in equations (22) and (23) depending on
�. The case of gravitational coupling follows from the
limit ↵

A

= 0. We will treat the new terms and pertur-
bations and use the method of osculating orbits [65]. In
this framework, the motion is at all times described by
a sequence of Keplerian orbits, with constants of motion
that evolve as a result of the perturbation. Particularly
relevant here is that the method allows us to compute the
evolution of the orbital parameters that are incorporated
in the (theory-independent) pulsar timing model that is
used to fit data [66–68].
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FIG. 1. Description of Keplerian orbits in terms of or-
bital elements viewed in the fundamental (X,Y, Z) reference
frame. The orbital (x, y, z) frame is also shown (centered

at M

2

for convenience). Here ~

V stands for a posible veloc-
ity of the binary barycentre with respect to DM, n̂ is the
unit vector pointing towards the ascending node. The vector
b̂(t) = cos �l(t)x̂ � sin �l(t)ŷ, with �l(t) given in Eq. (39), is
used to write Eq. (42) in a simple way.

///As/////////shown////in/////the////////////previous//////////section,////////given/////the///////////velocity
//~V/////of/////the//////BB/////in//////the////////frame//////////where//////the//////DM///////field////is
/////////////////homogeneous,///////the////////////e↵ective//////one/////////body////////////problem///////that
//////////////determines/////the/////////////dynamics///of/////the//////////binary/////////system/////(at//////first
///////order////in/////↵

A

///////and////at///////////leading////////order/////in//////the/////////////curvature
////////////produced////by//////the////////wave//////(5))//////can/////be/////////////described/////by/////the

////////////perturbed/////////////Keplerian/////////////equations///////(23)./ To study the mod-
ifications of the orbital motion in the framework of os-
culating Keplerian orbits, we need to recast these equa-
tions into the form of the so-called Lagrange planetary
equations [65]. Our calculation for the scalar wave is
analogous to the case of a tensorial gravitational wave
of Ref. [12]. Following [12], as the six independent or-
bital elements we choose the semimajor axis a, the or-
bital eccentricity e, the longitude of the ascending node
⌦, the longitude of the periastron $ = ! + ⌦ (with !
the argument of the periastron), the time of periastron
T , and the inclination angle ◆ of the orbital plane with
respect to the reference plane of the sky (see Fig. 1). We
use cartesian (x, y, z) and cylindric (r, ✓, z) coordinates
in the orbital plane /////////centred///in/////the////////body//////with///////mass/////M

2

,
so that ~r = rr̂ = r cos ✓x̂ � r sin ✓ŷ, with ✓ the angular
position of M

1

with respect to the direction of the peri-
centre (x̂), which is constant for the unperturbed system
(i.e., the vector ex̂ corresponds to the Runge-Lenz vec-
tor)6. It is convenient to decompose the force modifying
Newtonian dynamics in the right-hand side of Eq. (23)
as ~F = F

r

r̂ + F
✓

✓̂ + F
z

ẑ, from which [65]

da

dt
=

2

!
0

⇢

F
✓

r
a
p

1 � e2 +
F

r

ep
1 � e2

sin ✓

�

, (24)

de

dt
=

p
1 � e2

a!
0

{F
✓

(cos ✓ + cos E) + F
r

sin ✓} , (25)

d⌦

dt
=

r

a

F
z

sin(✓ + !)

a!
0

p
1 � e2 sin ◆

, (26)

d◆

dt
=

r

a

F
z

cos(✓ + !)

a!
0

p
1 � e2

, (27)

d$

dt
=

p
1 � e2

ae!
0

⇢

F
✓

sin ✓



1 +
r

a(1 � e2)

�

� F
r

cos ✓

�

(28)

+ 2 sin2

⇣ ◆

2

⌘ d⌦

dt
,

d✏
1

dt
= � 2

!
0

r

a

F
r

a
+
h

1 �
p

1 � e2

i d$

dt
(29)

+ 2
p

1 � e2 sin2

⇣ ◆

2

⌘ d⌦

dt
,

where ✏
1

= !
0

(t � T ) +$ � R

dt!
0

, !
0

=
p

GM
T

/a3 =
2⇡/P

b

(with P
b

the orbital period), E is the eccentric
anomaly that is defined by !

0

(t � T ) = E � e sin E.
The expressions to find the components of the force for a
generic vector in the (X, Y, Z) coordinates can be found
in [69]. The previous equations are supplemented by
those for the motion of the BB, Eq. (22). In this case, we
parametrize the perturbation with respect to the inertial
motion simply as ~R = ~R

in

+ � ~R. For these equations we

6 Note that the wave (5) does not introduce a preferred direction,
and therefore in the case of a universal coupling �↵ = 0 (or in

the case ~V = 0) one expects the orbital elements ◆ and ⌦ (which
are related to the orientation of the osculating orbit with respect
to the reference coordinate frame) to remain constant.

velocity of the binary 
w.r.t. dark matter

Future: non-universal coupling
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Summary

Binary pulsars are sensitive to ULDM with 


direct coupling to the mass already within reach, pure 
gravitational interaction may be probed with future surveys  

We don’t know what makes dark matter. Perhaps, ULDM is 
the simplest option. Theoretically motivated

Further understanding of structure formation with ULDM 
(baryonic effects, supermassive black hole) 


More probes: Inner Milky Way, 21 cm, more … 

Constraints on ULDM are pushing 

(Ly   , galaxy rotation curves)�

m � 10�23 ÷ 10�18eV

m � 10�21eV

Outlook


