Baikal-GVD project: current status and prospects

Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration QUARKS-2018, October 07, 2018

Baikal, Mediterranean Sea, South Pole

IC astrophysical neutrinos

82 events started in IC volume in 6 years

Gigaton Volume Detector (GVD) in Lake Baikal

Objectives:

- km3-scale 3D-array of photo sensors
- flexible structure allowing an upgrade and/or a rearrangement of the main building blocks (clusters)
- high sensitivity and resolution of neutrino energy, direction and flavor content

Central Physics Goals:

- Investigate Galactic and extragalactic neutrino"point sources" in energy range > TeV
- Diffuse neutrino flux energy spectrum, local and global anisotropy, flavor content
- Transient sources (GRB, ...)
- Dark matter indirect search
- Exotic particles monopoles, Q-balls, nuclearites, ...

Baikal-GVD: phase 1 (up to 2020)

	GVD-1
OMs	2304
Clusters (8 Strings)	8
Depths, m	750 – 1275
Eff. Volume (E _{SH} > 100 T eV)	0.4 km ³

Directional resolution	Energy resolution
Cascades: ~3°	δ(E/Esh) ~ 0.15
Muons: 0.25° - 0.5°	δ(IgE) ~ 0.4

• Location: 104°25' E; 51°46' N

Northern hemisphere- GC (~18h/day) and Galactic plane survey

The site

Location: 104°25' E; 51°46' N

Shore station

36 km Baika'lsk

The state of the last of the state of the st

Workshop&Storage facilities

Site:

- 1370 m maximum depth
- Distance to shore ~4 km
- No high luminosity bursts from biology.
- No K⁴⁰ background.

Baikal water

Abs.Length: $22 \pm 2 \text{ m}$

Scatt.Length: 30-50

m

Water properties

Count rates versus time for string No. 1

- Absorption length: ~ 22-24 m
- Scattering length: $L_s \sim 30\text{-}50 \text{ m}$ $L_{eff} = L_s / (1\text{-}\langle\cos\theta\rangle) \sim 300\text{-}500 \text{ m}$
- Strongly anisotropic phase function: $\langle \cos \theta \rangle \sim 0.9$

 Moderately low background in fresh water:

15 – 40 kHz (R7081HQE) absence of high luminosity bursts from biology and K⁴⁰ background.

Infrastructure (site)

Status:

- The DUBNA cluster installed on April 2015 has been upgraded to a final state one with 288 optical modules in 2016 spring. The second cluster started to operate on April 2017.
- The new data taking center at the array site has been installed.
- The new shore lab was installed on the site during summer 2017.
- The building in Baikalsk is prepared for a local lab and a temporary storage for optical modules of the next stages of the detector.

The optical modules production facility (Rearrangeed 2017)

The facility allows to produce and test up to 12 OM per day / We need to produce and send to the site 600 OM up to end of February

Stages of deployment of the Baikal-GVD

Configuration	2015	2016	2017	2018
The number of OMs	192 (8str×24)	288 (8str×36)	576	864
Geometric sizes	Ø80m×345m	Ø120m×525m	2ר120m×525m	3×∅120m×525m
Eff. Vol. (E > 100TeV)	0.03 km ³	0.05 km ³	0.1 km ³	0.15 km ³

Third cluster April 2018 All 3 clusters taking data

Now clearly bypassed ANTARES

Nb PMTs:

ANTARES: 885

GVD 2018: 864

Nb space points:

ANTARES: 295

GVD 2018: 864

~600 m

Detection Modes - cascades&muons

$$\nu_l + N \xrightarrow{cc} \begin{cases} e^- + X \rightarrow cascades \\ \tau^- + X \rightarrow cascades \\ \mu^- + X \rightarrow track + cascade \end{cases}$$

$$v_l + N \xrightarrow{NC} v_l + cascade$$

 $\mu/casc. \sim 1/3 \ for \ 1:1:1$

Downward going muon

upward going neutrino

Background muon bundle

Search for muon neutrinos (2016 yr.)

Reconstructed zenith angle distribution with cuts

Polar angle distribution of muons selected with the requirement of at least 6 hit OM's at 3 strings. Data (black dots) is compared to the atmospheric muon flux generated with CORSIKA (dashed histogram) and passed through the detector simulation (histogram)

Atmospheric background suppression

After track reconstruction and cuts on quality variables have been done, Boosted decision tree (BDT) was used.

BDT is trained on events reconstructed as upgoing with $0 < \theta < 80$ deg.

30k signal events 9k background evts.

signal is separated from the background by the BDT classifier value

cut BDT > 0.2 is 80% efficient for signal > 0.25 -> 65% efficient > 0.3 -> 40% eff.

2016: 33 live days

Preliminary

Angular distribution for BDT > 0.2 cut

- 30 events were selected in signal region in data
- < 3 background events are expected
- about of 36 signal events are expected

Neutrino Effective Area

Cascades detection with GVD Cluster

Directional resolution for cascades:

~ 3°- 4° - median value of mismatch angles

Distribution of mismatch angles

Baseline GVD Cluster $S_{cl} \sim (0.05 - 0.1) S_{lC}$

Energy resolution:

 $\delta E/E \sim 30\%$ averaged by E⁻² v_e spectrum

Energy spectrum of astrophysical neutrinos measured by IceCube:

4.1·10⁻⁶ E^{-2.46} GeV⁻¹ cm⁻² s⁻¹ sr ⁻¹

Expected number of detected events in GVD Cluster from astrophysical neutrinos for 1 yr. observation

Event selection criteria (E_{sh} >100 TeV, N_{hit} >20):

~0.6 events/yr are expected

A search for cascades induced by astrophysical neutrinos

(analysis of 2015 data – PRELIMINARY!)

- ➤ Total number of accumulated events 437 970 024 events (thresholds: low/high = 1.5/4 ph.el.)
- ightharpoonup Life time 3 597 921 s = 41.6 days

➤ After causality cuts – 18 840 822 events

$$(N_{hit} > 3; |t_i - t_j| < \Delta r_{ij}/v + \delta t)$$

Hit OM multiplicity dependence on cuts

Cuts	Events	Rejection
Reconstruction of coordinates (Q>1.5ph.el.)	1 171 077	1
$(\chi^2 < 2)$	316229	1/3.7
$(L_a < 10) & (\eta > 0)$	12931	1/90
E > 30 TeV	1291	1/900

One event with $N_{hit} = 17$ OMs and E > 100 TeV is delected!

Cuts	Events	Rejection
E > 30 TeV	1291	1/900
E > 60 TeV	859	1/1360
E > 100 TeV	539	1/2000

Hit OMs multiplicity after all cuts

 $E^{-2.46} \quad \text{atm. } \nu_e \quad \text{atm. } \nu_\mu \quad \text{atm. } \nu \text{ (total)}$ Probability of N_{hit} >16 OM: 0.047 0.0015 0.0026 0.0041

 $E = 107 \text{ TeV}, \ \theta = 56.6^{\circ}, \ \rho = 68 \text{ m}, \ z = -59 \text{ m}$

A search for cascades induced in GVD-2016 (*Preliminary*)

 \triangleright Life time – 15 693 192 s = 182.0 days

➤ Total number of accumulated events — 685523932 events (thresholds: low/high = 1.5/4 ph.el. & Q >1.5 ph.el.)

➤ After causality cuts – 327053415 events

$$(N_{hit} > 4; |t_i - t_j| < \Delta r_{ij}/v + \delta t)$$

Hit OM multiplicity of events surviving different cuts

Reconstructed cascades positions

Hit OM multiplicity of events with E > 10 TeV

Cuts	Events	Rejection		
Coordinates reconstruction & $N_{hit} > 9$	577495	1		
$\chi^2 < 4$	2405	1/240		
Energy reconstruction				
$L_a < 20$	374	1/6.4		
$\eta > 0$	159	1/2.4		
E > 10 TeV	57	1/2.8		
E > 100 TeV	5	1/11.4		
Total rejection factor:	1/115499			

Cascade: E=157 TeV, $\theta = 57^{\circ}$, $\phi = 249^{\circ}$ x=-25m, y=-37m, z=11m, ρ =44m

All hit OMs (93 hits)

Selected hits (53 hits)

Search for high-energy neutrinos associated with the GW170817 in GVD-2017

GW170817 from binary neutron star merger

```
GW: 17.08.2017, 12:41:04 UTC = 1502973664 sec UNIX (Advanced LIGO & Advanced VIRGO)
```

GRB170817A - (1.7 s delay – Fermi-GBM and INTEGRAL)

```
Location – galaxy NGS4993 at ~ 40 Mpc, at equatorial coordinates \alpha(J2000.0) = 13^{h} \ 09^{m} \ 48^{s}.085, \\ \delta(J2000.0) = -23^{\circ}22'53''.343
```

Search for neutrinos in coincidence with GW170817

Search for neutrinos by muon and cascade detection in two time-windows: $GW \pm 500$ sec (prompt emission) GW + 14 days (delayed emission)

Zenith angle of the source at detection time:

IceCube: 66.6°

ANTARES: 73.8°

Auger: 91.9°

SK: 108°

GVD: 93.3°

Search for neutrinos within GW \pm 500 s time-window

Search for neutrinos within GW \pm 500 s time-window

Search for neutrinos in GW170817 following 14 days time-window

Selection cuts

Coordinates of NGC4993 zenith angle range $74^{\circ} < \theta < 150^{\circ}$

Cut	Events in 14 day window
$N_{hit} > 7 OM/3 Str.$	384116
$\chi^2_t < 6$	12186
η > 0	445
L _a < 30	372
ψ < 20°	0

Upper limits on fluence of neutrinos associated with GW170817

No neutrino events associated with GW170817 have been observed Using cascade mode within $\pm\,500$ sec window and 14 days after the neutron star merger.

Assuming E⁻² spectral behavior and equal fluence in all flavors upper limits at 90% c.l. have been derived on the neutrino fluence from GW170817 for each energy decade.

Timeline GVD 1

Cumulative number of clusters vs. year

Year	2016	2017	2018	2019	2020	2021
Nb. of clusters	1	2	4	6	8	10
Nb. of OMs	288	576	1152	1728	2304	2592
		Actual numbe	3	5	7	9

Summary

- Prototyping & Early Construction Phase of Baikal-GVD project is concluded with construction and commission of the first GVD Cluster "Dubna" in 2015
- Array "Dubna" was upgraded to baseline configuration of GVD cluster with 288 OMs in 2016.
- The second and the third full-scale GVD clusters were installed and commissioned in April 2017 and April 2018.
- Completion of the GVD-1 is expected in 2020-2021.

