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Introduction

Lobanov A. E., Theoretical and Mathematical Physics, 2017, 192:1,
1000–1015

The fermions are combined in SU(3)-multiplets
1-patricle wave functions are elements of the representation space of
the direct product of Poincarre group and SU(3)
We may quantize the model
The Fock space for the superposition of mass states can be
constructed
We obtain the pertubation series in the interaction representation
The formulas for neutrino oscillations are in good agreement with
those obtained in the phenomenological theory
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Neutrino wave equation

An effective equation describing neutrino oscillations and its spin rotation
A. E. Lobanov, Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, 59, No.
11, 141, (2016).[Russ. Phys. J., 59, No. 11, 1891, (2016)].

(
iγµ∂µ−M−

1
2
γµf (e)µ (1+ γ5)P(e)− 1

2
γµfNµ(1+ γ5) I

)
Ψ(x) = 0. (2.1)

Here, I is a 3× 3 unit matrix , M — Hermitian mass matrix of the neutrino
multiplet, which can be written as follows

M =
3∑

l=1

mlP
(l). (2.2)

ml are the eigenvalues of the mass matrix, which have the meaning of the
masses of the multiplet components, and the matrices P(l) are orthogonal
projectors on the subspaces with these masses. Matrix P(e) is the projector
on the state of the neutrino with electron flavor.
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Neutrino wave equation

The effective potential due to the interaction via charged currents

f µ(e) =
√
2GF

(
jµ(e) − λµ(e)

)
(2.3)

The effective potential due to the neutral current interaction

f µN =
√
2GF

∑
i=e,p,n

(
jµ(i)

(
T (i) − 2Q(i) sin2 θW

)
− λµ(i)T (i)

)
(2.4)

Here
jµ(i) = {n̄(i)v0(i), n̄(i)v(i)} (2.5)

are the 4-vectors of the current, and

λµ(i) =

{
n̄(i)(ζ(i)v(i)), n̄(i)

(
ζ(i) +

v(i)(ζ(i)v(i))
1 + v0(i)

)}
(2.6)

are the 4-vectors of the polarizarion of the components of the medium.
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Neutrino wave equation

In the 3-flavor model Ψ is a 12-component object. It is convenient to
introduce block structure, namely to define this object as three Dirac
spinors

Ψ =

ψ1
ψ2
ψ3

 . (2.7)

In the 2-flavor model the wave function Ψ can be presented as a pair of
Dirac spinors.
We will call the representation of the matrices M, P(e), which diagonalizes
the mass matrix, the mass representation. We also introduce the flavor
representation of these matrices as a representation, where the projectors
P(e) are diagonal matrices. These representations are connected by the
unitary mixing matrix UPMNS .
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Neutrino wave equation

In the 2-flavor model in the mass representation

M0 =
1
2

(σ0(m1+m2)−σ3(m2−m1)), P
(e)
0 =

1
2

(σ0−σ1 sin 2θ+σ3 cos 2θ),

(2.8)
where σi , i = 1, 2, 3 are Pauli matrices, σ0 is the unit matrix 2× 2, θ is the
mixing angle.
In the flavor representation

M =
1
2

(σ0(m1+m2)−(σ3 cos 2θ−σ1 sin 2θ)(m2−m1)), P(e) =
1
2

(σ0+σ3).

(2.9)
U is the Pontecorvo-Maki-Nakagawa-Sakata matrix. In the 2-flavor model
it takes the form

U =

(
cos θ sin θ
− sin θ cos θ

)
, (2.10)

M = UM0U
†, P(e) = UP

(e)
0 U†, (2.11)
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Mass states and states with definite flavor

The mass states are the states, which are described by the wave functions
Ψi (i = 1..3), which can be written in the mass representation as follows

Ψ1 =

ψ1
0
0

 Ψ2 =

 0
ψ2
0

 Ψ3 =

 0
0
ψ3

 , (3.1)

where ψi , i = 1..3 are the Dirac spinors.
We say that the neutrinos are in states with definite flavor in a given
moment of time if their wave functions Ψ̃i (i = 1..3) in the flavor
representation take the form

Ψ̃1 =

ψ̃1
0
0

 Ψ̃2 =

 0
ψ̃2
0

 Ψ̃3 =

 0
0
ψ̃3

 , (3.2)

where ψ̃i , i = 1..3 are the Dirac spinors.
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Greens function

We will use the notation p̂ = pµγµ.
In the momentum representation the Greens function may be written as
follows

G (p) =

(
p̂I− 1

2
f̂ (1 + γ5)(aI+ P(e))−M

)−1

, (4.1)

If we introduce the notations

H∓(p) =

(
p̂I− 1

2
f̂ (1 + γ5)(aI+ P(e))∓M

)
, (4.2)

the Greens function take the form

G (p) = (H−(p))−1 . (4.3)
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Greens function

It can be shown that

G (p) =
1
2

∑
ζ=±1

H+(p, ζ)F−(p, ζ)

D(p, ζ)
(1 + ζS), (4.4)

where

F±(p, ζ) = p2 − ((pf )− Rζ)

(
a +

1
2
± 1

2
σ3

)
− m2

1 + m2
2

2
±

± m2
2 −m2

1
2

(σ3 cos 2θ − σ1 sin 2θ)± i
4
f̂ (1 + γ5)(m2 −m1)σ2 sin 2θ,

(4.5)

D(p, ζ) =

(
p2 − ((pf )− Rζ)

(
a +

1
2

)
− m2

1 + m2
2

2

)2

−

−
(

((pf )− Rζ)

2
− m2

2 −m2
1

2
cos 2θ

)2

−
(
m2

2 −m2
1

2
sin 2θ)

)2

. (4.6)
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Greens function

Here, operator S describes the projection of neutrino spin on its canonical
momentum in the matter rest frame. In the reference frame, where the
medium is moving, it takes the form

S =
1
2R

γ5(f̂ p̂ − p̂f̂ ), S2 = 1, (4.7)

where R =
√

(fp)2 − f 2p2.
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Stationary solutions

An effective equation describing neutrino oscillations and its spin rotation

(
iγµ∂µ−M−

1
2
γµf (e)µ (1+ γ5)P(e)− 1

2
γµfNµ(1+ γ5) I

)
Ψ(x) = 0. (5.1)

Lobanov A. E. "Particle quantum states with indefinite mass and neutrino
oscillations."2015.
arXiv:1507.01256[hep-ph].
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Stationary solutions

We will search for the stationary solutions in the form

Ψ(x) = e−i(px)Ψ0, (5.2)

where the spinor Ψ0 is an arbitrary 8-component spinor, which does not
depend on the coordinates of the event space. Here the component of the
4-momentum p0 is the neutrino energy, and p is the canonical momentum
of the neutrino multiplet.
It can be shown that for the moving medium the solutions may be found as
the eigenfunctions of the operator which describes the polarization state of
the neutrino

γ5 f̂ p̂ − p̂f̂

2
√

(fp)2 − f 2p2
→ (Σp)

|p|
(5.3)

For the matter at rest f µ = {f 0, 0, 0, 0} the neutrino helicity is conserved,
and the 8-component spinor (5.2) can be chosen as the eigenfunction of
the helicity operator.
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Stationary solutions

We will use the standard representation of the γ-matrices.
8-component spinors, which describe the neutrino with definite helicity,
take the form

ΨT =
(
Aζ1χ1,A

ζ
1χ2,A

ζ
2χ1,A

ζ
2χ2,B

ζ
1χ1,B

ζ
1χ2,B

ζ
2χ1,B

ζ
2χ2

)
e−i(px), (5.4)

where χ1, χ2 are complex values such that

(σp)

|p|

(
χ1
χ2

)
= ζ

(
χ1
χ2

)
. (5.5)

The matrix equation on the coefficients Aζn, B
ζ
n (n = 1, 2) follows from the

neutrino evolution equation.
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Stationary solutions

If the matter is unpolarized, then the dispersion law takes the form

(p0 − ζ|p|)2 + 2(ζ|p| − f0
2

(a + 1/2))(p0 − ζ|p|)− m2
1 + m2

2
2

=

=
ξ

2

√
(f0(p0 − ζ|p|)− (m2

2 −m2
1) cos 2θ)2 + (m2

2 −m2
1)2 sin2 2θ, (5.6)

where ξ is either 1 or −1.
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Stationary solutions

Coefficients Aζn, B
ζ
n n = 1, 2 are defined up to a multiplicative constant N

NAζ1 =
f0 sin 2θ

4
(p0 − ζ|p|+ m1)(p0 − ζ|p| −m2), (5.7)

NAζ2 = − f0 sin 2θ
4

(p0 − ζ|p| −m1)(p0 − ζ|p| −m2), (5.8)

NBζ1 =
f 2
0 sin2 2θ

8
(p0 − ζ|p|) +

1
2

(
ζ|p| − f0

2
(a +

1
2
− cos 2θ

2
)

)
·

·
(
m2

1 −m2
2 − ξ∆ + f0(p0 − ζp) cos 2θ

)
, (5.9)

NBζ2 =
f 2
0 sin2 2θ

8
(p0 − ζ|p|) +

1
2

(
p0 −m2 −

f0
2

(a +
1
2
− cos 2θ

2
)

)
·

·
(
m2

1 −m2
2 − ξ∆ + f0(p0 − ζ|p|) cos 2θ

)
. (5.10)

where ∆ =
√

(f0(p0 − ζ|p|)− (m2
1 −m2

2)2 cos 2θ)2 + (m2
1 −m2

2)2 sin2 2θ.
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Stationary solutions

For the ultrarelativistic left-handed neutrinos the solutions corresponding to
ξ = 1 and ξ = −1 can be written as follows

Ψ+ =



sinφ

(
χ1
χ2

)
− sinφ

(
χ1
χ2

)
cosφ

(
χ1
χ2

)
− cosφ

(
χ1
χ2

)


e−i(ε+t−px)
√
2

, Ψ−=



cosφ

(
χ1
χ2

)
− cosφ

(
χ1
χ2

)
− sinφ

(
χ1
χ2

)
sinφ

(
χ1
χ2

)


e−i(ε−t−px)
√
2

(5.11)
where ε+, ε− are different solutions of the equation, which represents the
dispersion law.
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Stationary solutions

Here we use the notations

sinφ =
2f0p0 sin 2θ√

(2f0p0 sin 2θ)2 + (2f0p0 cos 2θ − (m2
2 −m2

1))2
, (5.12)

cosφ =
(m2

2 −m2
1)− 2f0p0 cos 2θ√

(2f0p0 sin 2θ)2 + (2f0p0 cos 2θ − (m2
2 −m2

1))2
, (5.13)

∆ =
√

(2f0p0 − (m2
2 −m2

1)2 cos 2θ)2 + (m2
2 −m2

1)2 sin2 2θ(5.14)
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Stationary solutions

The stationary states for the neutrino in medium are not the mass states.
In the limit f 0 → 0 in the mass representation the solutions of the
evolution equation are the wave functions of the mass states

Ψ+ =
1√
2



0
0
0
0
χ1
χ2
−χ1
−χ2


e−i(ε+t−px), Ψ− =

1√
2



χ1
χ2
−χ1
−χ2
0
0
0
0


e−i(ε−t−px), (5.15)

As we have expected, the stationary states in vacuum are the mass states.
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Stationary solutions

In the flavor representation the stationary solutions with the momentum p
for ξ = 1 and ξ = −1 take the form

Ψ̃+ =



sin θm

(
χ1
χ2

)
− sin θm

(
χ1
χ2

)
cos θm

(
χ1
χ2

)
− cos θm

(
χ1
χ2

)


e−i(ε+t−px)
√
2

, Ψ̃−=



cos θm

(
χ1
χ2

)
− cos θm

(
χ1
χ2

)
− sin θm

(
χ1
χ2

)
sin θm

(
χ1
χ2

)


e−i(ε−t−px)
√
2

,

(5.16)
where θm = θ + φ is the effective mixing angle in matter, which is defined
as follows

cos 2θm =
(m2

1 −m2
2) cos 2θ − 2f 0p0

∆
, sin 2θm =

(m2
1 −m2

2) sin 2θ
∆

.

(5.17)
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Coherent states wave functions

When the 4-vectors of current and polarization do not depend on the
coordinates of the event space, the solution can be written with the help of
the matrix exponential using the method developed in the following papers
Lobanov A. E. Phys. Lett. B. 2005. 619, N 1-2. P. 136
Arbuzova E. V., Lobanov A. E., Murchikova E. M. Phys. Rev. D. 2010. 81,
N 4. 045001

Ψ(x) = U(x)Ψ0 (6.1)

where
Ψ0 =

1
2

(1− γ5γµs
µ
0 )
(
ψ0 ⊗ ej

)
, Ψ̄0Ψ0 = 2. (6.2)

Here ψ0 is a constant bispinor, ej is an arbitrary unit vector in the three
dimensional vector space over the field of complex numbers, sµ0 being the
4-vector of neutrino polarization, which satisfies the condition (us0) = 0.
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Coherent states wave functions

In the flavor representation the solution of this type takes the form

Ψ(x) =
1√
2q0

U(γµq
µ + m)Ψ0,

U =
∑
ζ=±1

exp−i
(

(qx)

2m
(m1 + m2) +

1
2

((fx)− ζF ) (a + 1/2)

)
×
(

cos
Zζ
2
− i sin

Zζ
2

(Xζσ1 − Yζσ3)

)
,

Xζ =
1
Zζ

(
(qx)

m
(m2 −m1) sin 2θ

)
,

Yζ =
1
Zζ

(
(qx)

m
(m2 −m1) cos 2θ − 1

2
((fx)− ζF )

)
,

Zζ =

√(
(qx)(m2−m1)

m sin 2θ
)2

+
(
(qx)(m2−m1)

m cos 2θ − (fx)−ζF
2

)2
.

(6.3)
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Coherent states wave functions

Here, the following notations are used

F =
(fx)(fq)− (qx)f 2√

(fq)2 − f 2q2
,

sµ =
qµ(fq)− f µq2

m
√

(fq)2 − f 2q2
.

(6.4)

qµ is the kinetic momentum of the neutrino, q2 = m2.
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Quasi-classical approach

In the ultrarelativistic limit the 4-velocity of the neutrino uµ = {u0,u},
which is connected to the kinetic momentum as follows uµ = qµ/m, can be
related to the coordinates of the particle as follows

xµ = uµτ. (7.1)

Therefore, we obtain the solution of the quasi-classical neutrino evolution
equation Lobanov A.E., Chukhnova A.V. Moscow University Physics
Bulletin, 2017, Vol. 72, No. 5.
The evolution of the neutrino is characterized by the only parameter τ ,
which is the proper time

τ = L/|u|. (7.2)
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Quasi-classical approach

Let us consider the spin-flavor transitions between the states with definite
flavors. The projectors on these states are given by the following matrices

P
(α)
0 =

1
2

(1 + ξ0σ3) , P
(β)
0 =

1
2
(
1 + ξ′0σ3

)
, ξ0, ξ

′
0 = ±1. (7.3)

Let’s assume that in each these states the neutrino has definite helicity, i. e.

s
(α)µ
0 = ζ0s

µ
sp, s

(β)µ
0 = ζ ′0s

µ
sp, sµsp = {|u|, u0u/|u|}. (7.4)

The probability in this case is given by the following expression

Wα→β =
1 + ξ0ξ

′
0

2
1 + ζ0ζ

′
0

2
W1 +

1 + ξ0ξ
′
0

2
1− ζ0ζ ′0

2
W2+

+
1− ξ0ξ′0

2
1 + ζ0ζ

′
0

2
W3 +

1− ξ0ξ′0
2

1− ζ0ζ ′0
2

W4. (7.5)
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Quasi-classical approach

W1 =
1
2

(
1
2

(1− ζ0(sssp))2(1− S2
+1X

2
+1) +

1
2

(1 + ζ0(sssp))2(1− S2
−1X

2
−1)+

+ (1− (sssp)2)(C+1C−1 + S+1S−1Y+1Y−1) cos(ωτ)+

+ ξ0(1− (sssp)2)(S+1Y+1C−1 − C+1S−1Y−1) sin(ωτ)

)
,

W2 =
1
2

(
1
2

(1− (sssp)2)(2− S2
+1X

2
+1 − S2

−1X
2
−1)−

− (1− (sssp)2)(C+1C−1 + S+1S−1Y+1Y−1) cos(ωτ)−

− ξ0(1− (sssp)2)(S+1Y+1C−1 − C+1S−1Y−1) sin(ωτ)

)
,

W3 =
1
2

(
1
2

(1− ζ0(sssp))2S2
+1X

2
+1 +

1
2

(1 + ζ0(sssp))2S2
−1X

2
−1+

+ (1− (sssp)2)S+1S−1X+1X−1 cos(ωτ)

)
,

W4 =
1
2

(
1
2

(1− (sssp)2)(S2
+1X

2
+1 + S2

−1X
2
−1)−

− (1− (sssp)2)S+1S−1X+1X−1 cos(ωτ)

)
.

(7.6)
Here

C±1 = cos
(
τZ±1/2

)
, S±1 = sin

(
τZ±1/2

)
, ω = R(1/2 + a). (7.7)
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Quasi-classical approach

Yζ =
1
Zζ

((
(fu)− ζR

)
/2−

(
m2 −m1

)
cos 2θ

)
,

Xζ =
1
Zζ

((
m2 −m1

)
sin 2θ

)
,

Zζ =

√((
(fu)− ζR

)
/2−

(
m2 −m1

)
cos 2θ

)2
+
((

m2 −m1
)

sin 2θ
)2
.

(7.8)
If we assume u0 ≈ |u|, then for the medium at rest

Y+ = − cos 2θ, X+ = sin 2θ,
Y− = − cos 2θeff , X− = sin 2θeff ,

(7.9)

where θeff is the effective mixing angle in matter.

C±1 = cos
(
τZ±1/2

)
, S±1 = sin

(
τZ±1/2

)
, ω = R(1/2 + a). (7.10)
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Quasi-classical approach

Generally, these spin-flavor transition probabilities are characterized by six
frequences. If u0 ≈ |u| then

L0
osc =

2π|u|
Z+1

(7.11)

is the flavor oscillation length in vacuum, and the parameter

Lf
osc =

2π|u|
Z−1

(7.12)

is the flavor oscillation length in matter. Four combinational oscillation
lengths

Lc
osc =

∣∣∣∣ 4π|u|
Z−1 ± Z+1 ± 2ω

∣∣∣∣ (7.13)

arise due to correlations between flavor transitions and the spin rotation.
The number of such combinational lengths under certain conditions can be
equal to two.
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Spin-flip probability

The spin-flip probability W is the sum of W2 and W4

W =
1
2

A (A1(1−cosω1τ)+A2(1−cosω2τ)+A3(1−cosω3τ)+A4(1−cosω4τ)),

(8.1)
where

A = 1− (sssp)2. (8.2)

1− (sssp)2 =
v2 sin2 ϑ

(vu)2 − 1
(8.3)

does not depend on the medium density. It depends on the 4-velocities of
the medium vµ and the neutrino uµ. Here, ϑ is the angle between the
vectors of the velocities of the medium and the neutrino.
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Spin-flip probability

If u > v, then the maximum value of this amplitude is obtained when

cosϑmax =

√
v2
0 − 1/v0√
u2
0 − 1/u0

, (8.4)

It is equal to

(1− (sssp)2)max =
v2
0 − 1
u2
0 − 1

. (8.5)

If u < v, the maximum value of this amplitude is obtained when

cosϑmax =

√
u2
0 − 1/u0√
v2
0 − 1/v0

, (8.6)

It is equal to
(1− (sssp)2)max = 1. (8.7)
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Spin-flip probability

The dependence of the overall amplitude of spin-flip on the angle ϑ
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Spin-flip probability

u0 = 10, v0 = 10 u0 = 100, v0 = 100
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Spin-flip probability

We demonstrate the figures for the dependence of spin-flip on the distance
from the detector. The scale on the horisontal axis is L/Losc , where Losc is
the flavor oscillations length in vacuum. The k parameter characterizes the
degree of medium impact on the neutrino propagation

k =

√
2GFn

|m1 −m2|
, (8.8)

where n is the medium density in the laboratory frame.
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Spin-flip probability

ξ0 = ±1, u0 = 10, v0 = 50,
k = 10, cosϑ = cosϑmax

ξ0 = ±1, u0 = 10, v0 = 50,
k = 20, cosϑ = cosϑmax
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Spin-flip probability

ξ0 = ±1, u0 = 10, v0 = 50,
k = 10, cosϑ = 0.9

ξ0 = ±1, u0 = 50, v0 = 10,
k = 10, cosϑ = cosϑmax
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Conclusions

Conclusion

We find the Greens function of neutrino in dense medium.
We show that the stationary states in medium differ from the mass
states.
The wave function, describing the state with a definite flavor in matter
can be constructed as a linear combination of the stationary states.
The coefficients in this linear combination depend on the mixing angle
in matter.
We obtain the wave functions of the spin-flavor coherent states, which
in quasi-classical limit become similar to the solutions of the
quasi-classical evolution equation. These solutions describe the
neutrino with definite velocity.
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Conclusions

We obtain the spin-flip probability for ultrarelativistic neutrinos. The
pattern of such transitions depends on the initial flavor state of the
neutrino, as well as on the density of the medium and the velocities of
neutrino and the medium.
There is no spin rotation for the medium at rest.
The spin-flip probability is non-zero only if the directions of neutrino
propagation and the movement of the medium are close (but not
equal) to each other.
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Thank you for your attention!
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