Skewed Sudakov Regime

Grigory Pivovarov

Quarks-2018, Valday, May 27-June 2, 2018

Sudakov Form Factor

V.V. Sudakov, JETP, 1956 Vertex Parts $\Gamma_{\mu}(p,q)$ in Minkowski kinematics (The plane of external momenta p, q, l = p - q contains two light-like lines crossing at the origin)

Sudakov Form Factor

$$\lim_{l^2 \to \infty} \Gamma_{\mu}(p,q) = -ie\gamma_{\mu} \exp\left(-\frac{\alpha}{2\pi} \log |\frac{l^2}{p^2}|\log |\frac{l^2}{q^2}|\right)$$

Sudakov at One Loop

Scalar

$$\lim_{l^2 \to \infty} \frac{l^2}{4\pi^2} \int \frac{d^4k}{(p-k)^2 k^2 (q-k)^2} \approx \frac{i}{4} \log |\frac{l^2}{p^2}| \log |\frac{l^2}{q^2}|$$

Sudakov variables and logarithmic regions

Sudakov Results

- Coefficients by the doubly logarithmic corrections do not depend on the UV scale
- No new tensor structures
- Explicit Form Factor

$$\lim_{q^2 \to 0} \frac{l^2}{4\pi^2} \int \frac{d^4k}{(p-k)^2 k^2 (q-k)^2} \approx \frac{i}{4} \log |\frac{l^2}{q^2}| C(l^2/p^2)$$

$$\frac{C(l^2/p^2)}{(p-k)^2 k^2 (q-k)^2} \approx \frac{i}{4} \log |\frac{l^2}{q^2}| C(l^2/p^2)$$

Relation to Sudakov:

$$\lim_{p^2 \to 0} C(l^2/p^2) \approx \log |\frac{l^2}{p^2}|$$

Loop momentum in the denominators of the propagators can be neglected

$$p\!\!\left(\mathsf{\Gamma}_{\mu}(p,q) \right) \!\!/\!\!q \approx 2 p\!\!\!/ \left(-e^3 q\!\!\!/p \gamma_{\mu} \right) \!\!/\!\!q \times \frac{Scalar}{4\pi^2 l^2}$$

$$\approx p \left(-ie\gamma_{\mu}\right) \not q \times \left(-\frac{\alpha}{2\pi} \log \left|\frac{l^2}{p^2}\right| \log \left|\frac{l^2}{q^2}\right|\right)$$

Agrees with the result

$$\Gamma_{\mu}(p,q) \approx -ie\gamma_{\mu} \exp\left(-\frac{\alpha}{2\pi} \log |\frac{l^2}{p^2}|\log |\frac{l^2}{q^2}|\right)$$

On dimensional grounds, there are three types of logs:

$$\begin{split} \log |\frac{l^2}{q^2}|, \log |\frac{l^2}{p^2}|, & \text{and } \log |\frac{l^2}{\mu^2}| \\ t &\equiv \frac{\alpha}{2\pi} \log |\frac{l^2}{q^2}| \end{split}$$

Leading log: $t^n F_n(l^2/p^2, l^2/\mu^2)$ Subleading logs: $\alpha^n t^m, n > 0$

Result #1: F_n depends only on l^2/p^2 No dependence on μ in the leading logarithms

Result #2:

$$\Gamma_{\mu}(p,q) \approx -ie\gamma_{\mu}F^{sk}(p,q) + ie\frac{q_{\mu}p}{qp}\left(F^{sk}(p,q) - 1\right)$$

Compare to classical Sudakov:

$$\Gamma_{\mu}(p,q) \approx -ie\gamma_{\mu}F^{S}(p,q)$$

$$F^S(p,q) = \exp\big(-t\log|\tfrac{l^2}{p^2}|\big)$$

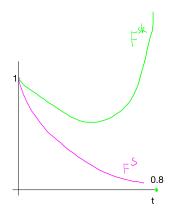
$$\begin{aligned} \lim_{p^2 \to 0} F^{sk}(p,q) &= F^S(p,q) \Phi_s(t) \\ s &= 0, \pm \end{aligned}$$

$$\frac{l^2}{p^2} > 0 \Leftrightarrow s = 0$$

$$\Phi_0(t) &= \frac{1}{1 - t^2 - t \exp(-t)}$$

The Skewed Form Factor ...

$$\begin{split} \frac{l^2}{p^2} < 0 &\Leftrightarrow s = \frac{l^2}{|l^2|} \\ \Phi_{\pm}(t) = \exp\big(\pm i\pi t\big) \Phi_0(t) \end{split}$$



Longitudinal and Transverse Momenta of Virtual Particles

$$\Gamma_1 \equiv \frac{l^2}{4\pi^2} \int \frac{d^4k}{(p-k)^2 k^2 (q-k)^2} = \frac{l^2}{4\pi^2} \int \frac{d^2k_\parallel d^2k_\perp}{(p-k)^2 k^2 (q-k)^2}$$

 k_{\parallel} is a linear combination of external momenta, and

$$k_{\perp}q = k_{\perp}p = 0$$

Transverse plane is Euclidean

$$k_{\perp}^2 \le 0, t \equiv -k_{\perp}^2$$

Integrating out the orientation of k_{\perp} one obtains

$$\Gamma_1 = \frac{l^2}{4\pi} \int \frac{d^2k_{\parallel} dt \theta(t)}{(p-k)^2 k^2 (q-k)^2}$$

$$\Gamma_1 = \int rac{\mathrm{d}^2 k_\parallel \mathrm{d} t heta(t)}{(q-k_\parallel)^2 - t + \mathrm{i}\epsilon} G(k_\parallel,t)$$

$$G(k_{\parallel}, t) = \frac{l^2}{4\pi} \frac{1}{k^2((p - k_{\parallel})^2 - t)}$$

We will manipulate with the θ -function. As a result, integration over negative t will appear

It will be advantageous to consider doubly virtual particles with not only nonzero k^2 but also with positive k_{\perp}^2 (with purely imaginary components of k_{\perp})

Inclination of Doubly Virtual Particles

Instead of $t \equiv -k_{\perp}^2$ it will be convenient to use another variable—the inclination ν

$$\nu \equiv \frac{\mathbf{k}_{\parallel}^2}{\mathbf{k}_{\parallel}^2 - \mathbf{t}} = \frac{\mathbf{k}_{\parallel}^2}{\mathbf{k}^2}$$

In terms of ν

$$heta(\mathrm{t}) = heta(\mathrm{k}_{\parallel}^2) - rac{\mathrm{k}_{\parallel}^2}{|\mathrm{k}_{\parallel}^2|} hetaig(
u(1-
u)ig)$$

$$\begin{split} &\int \mathrm{d}^2k_\parallel \mathrm{d}t \theta(t) G(k_\parallel,t) = \int \mathrm{d}^2k_\parallel \mathrm{d}t \theta(k_\parallel^2) G(k_\parallel,t) - \\ &- \int_0^1 \frac{\mathrm{d}\nu}{\nu^2} \int \mathrm{d}^2k_\parallel k_\parallel^2 G(k_\parallel,k_\parallel^2(1-1/nu)) \end{split}$$

The part with the integration over time-like longitudinal momentum vanishes because of Feynman's $i\epsilon$

Inclination Representation

As a result

$$\begin{split} \Gamma_1 &= -\int_0^1 \mathrm{d}\nu \int \frac{\mathrm{d}^2 k_{\parallel}}{(k_{\parallel} - q\nu)^2 + q^2 \nu (1 - \nu) + i\epsilon} G(k_{\parallel}, \nu) \\ G(k_{\parallel}, \nu) &= \Big(\frac{l^2}{4\pi}\Big) \frac{1}{(p - k_{\parallel})^2 - k_{\parallel}^2 (1 - 1/\nu)} \end{split}$$

Leading logarithm comes from a vicinity of $k_{\parallel}=q\nu$ To extract it, one uses the formula

$$\int_A \frac{d^2k}{k^2 + q^2 + i\epsilon} \approx -i\pi \log |\frac{A^2}{q^2}|$$

 A_{\pm} are limits of integration around zero $k_{\pm}=k_0\pm k_1$

$$\Gamma_1 \approx \frac{\mathrm{i}}{4} \log |\frac{\mathrm{l}^2}{\mathrm{q}^2}| \int_0^1 \frac{\mathrm{l}^2 \mathrm{d}\nu}{\mathrm{p}^2 (1 - \nu) + \mathrm{l}^2 \nu + \mathrm{i}\epsilon}$$

$$C(\mathrm{l}^2/\mathrm{p}^2) = \int_0^1 \frac{\mathrm{l}^2 \mathrm{d}\nu}{\mathrm{p}^2 (1 - \nu) + \mathrm{l}^2 \nu + \mathrm{i}\epsilon}$$
As expected
$$C(\mathrm{l}^2/\mathrm{p}^2) \approx \log |\frac{\mathrm{l}^2}{\mathrm{p}^2}|$$

Figure: Schwinger-Dyson equation for 1PI vertex part

$$G_{\mu}(p,q) = \int_{0}^{2\pi} d\phi \int_{0}^{1} d\nu \int d^{2}k_{\parallel} \frac{I_{\mu\lambda}(p,k;q-k)k'\gamma^{\lambda}}{(k_{\parallel}-\nu q)^{2}+q^{2}\nu(1-\nu)+i\epsilon}$$

$$k_{\perp} = \sqrt{-k_{\perp}^{2}} \left(\cos(\phi),\sin(\phi)\right), k_{\perp}^{2} = k_{\parallel}^{2} \left(\frac{1}{\nu}-1\right)$$

after radiating the photon the incoming fermion is "inclined" to carry away the fraction of the initial momentum ν

Conclusions

- Skewed Sudakov regime was introduced
- Doubly virtual particles and their inclination were defined
- Consideration of the Skewed Sudakov using incination gives simultaneously simplification and generalization of the classical Sudakov treatment
- Skewed Sudakov may have phenomenological applications