Parity anomaly in four dimensions

Maxim Kurkov

Università di Napoli Federico II, INFN Napoli

based on: Phys.Rev. D96 (2017) no.2, 025011 and JHEP 1803 (2018) 072 by M.K. and Dmitri Vassilevich

QUARKS-2018, Valday

Outline:

- * Parity anomaly in 3D: a brief review.
- * Confined fermions in 4D.
- * Parity anomaly in 4D: the definition.
- * Parity anomaly in 4D: the computation.
- * Parity anomaly in 4D: the gravitational contribution.
- * Summary.

Parity anomaly in 3D

Niemi, Semenoff - Phys. Rev. Lett. 51, 2077 (1983)
 Redlich - Phys. Rev. Lett. 52, 18 (1984)

QED of massless fermions in 3D.

• At the **classical** level the massless fermionic field $\psi(x)$ satisfies:

$$\left(\not D[A] \psi \right)(x) = 0, \quad \not D[A] = i \gamma^i \left(\frac{\partial}{\partial x^i} + i A_i(x) \right)$$

This e.o.m. is invariant upon the parity transformation:

$$\begin{cases} \psi(x) \longrightarrow \psi(-x) \\ A_i \longrightarrow -A_i(-x) \end{cases} \Rightarrow \mathcal{D}[A]\psi(x) \longrightarrow -\left(\mathcal{D}[A]\psi\right)(-x) = 0$$

Parity anomaly in 3D

• Quantization:

$$\int \mathcal{D}\bar{\psi}\mathcal{D}\psi\,e^{-\int d^3x\,\bar{\psi}\not{\!\!\!D}[A]\psi} = \det\left(\not{\!\!\!D}[A]\right) = e^{-W[A]}$$

$$W[A] = -\log\det\not{\!\!\!D} \quad - \quad \text{the one loop effective action}$$

• The one-loop radiative correction W[A] breaks the parity symmetry $A_i(x) \longrightarrow -A_i(-x)$ due to the Chern-Simons term!

$$W[A] = \pm \frac{\mathrm{i}}{8\pi} \int d^3x \ A_i \partial_j A_k \epsilon^{ijk} + \text{ parity-even terms}$$

Parity anomaly in 3D

Let us track the origin of this anomaly.

$$e^{-W[A]} = \det \left(\not\!\!D[A] \right) = \prod_{\lambda \in \operatorname{Spec} \left(\not\!\!D[A] \right)} \lambda$$

The parity transformation reflects the spectrum of the Dirac operator:

$$\left(\cancel{D}[A]\psi \right)(x) = \lambda \psi(x) \longrightarrow \left(-\cancel{D}[A]\psi \right)(-x) = \lambda \psi(-x)$$

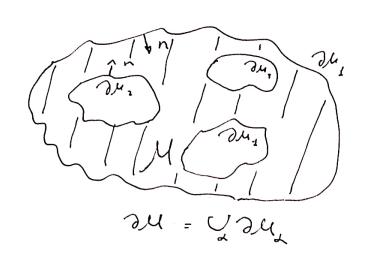
Parity anomaly expresses a spectral asymmetry of the Dirac operator:

$$W_{\text{odd}} = -\frac{1}{2} \left(\log \det \left(\mathcal{D}[A] \right) - \log \det \left(-\mathcal{D}[A] \right) \right) \neq 0$$

Confined fermions in 4D: general setup

We are dealing with the Euclidean 4D manifold ${\mathcal M}$ with a boundary $\partial {\mathcal M}$

The Dirac operator is the usual one



Boundary conditions must satisfy:

$$\bullet \not\!\! D^\dagger = \not\!\! D$$

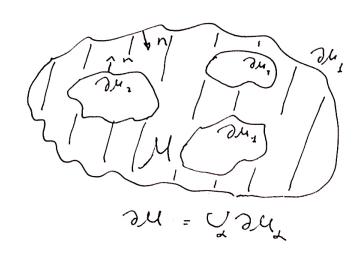
•
$$\not D^{\dagger} = \not D$$

• $\left(\bar{\psi} \gamma^{\mu} \psi \right) n_{\mu} \Big|_{\partial \mathcal{M}} = 0$

Confined fermions in 4D: the boundary conditions

We exploit the (Euclidean version of) the MIT bag boundary conditions

For each component of the boundary $\partial \mathcal{M}_{\alpha}$ we define the projectors



$$\Pi_{\pm} = \frac{1}{2} \left(1 \pm i \epsilon_{\alpha} \gamma^{5} \gamma^{n} \right), \quad \epsilon_{\alpha} \in \{-1, +1\}$$

and impose the boundary conditions

$$\left. \Pi_{-}\psi \right|_{\partial\mathcal{M}} = 0$$

These boundary conditions guarantee that:

- $\bullet \not\!\! D^\dagger = \not\!\! D$
- $\bullet \left(\bar{\psi} \gamma^{\mu} \psi \right) n_{\mu} \Big|_{\partial \mathcal{M}} = 0$

Parity anomaly in 4D: the definition

The parity anomaly can be defined in arbitrary dimension via

$$W_{\text{odd}} = -\frac{1}{2} \left(\log \det \left(\mathcal{D}[A] \right) - \log \det \left(-\mathcal{D}[A] \right) \right)$$

however this expression does not make any sense, unless one introduces the regularisation.

 ζ -function regularisation of the fermionic determinant:

$$W\left[\not\!\!D\right] \equiv -\log \det \left(\not\!\!D[A]\right) \longrightarrow \mu^s \Gamma(s) \zeta(s,\not\!\!D) \equiv W_s[\not\!\!D], \quad s \to 0$$

where the zeta function is defined in the following way:

$$\zeta(s, \mathbb{D}) = \sum_{\lambda > 0} \lambda^{-s} + e^{-i\pi s} \sum_{\lambda < 0} (-\lambda)^{-s}$$

Parity anomaly in 4D: the definition

We are interested in the parity-odd contribution

$$\zeta_{\text{odd}}\left(s, \cancel{D}\right) \equiv \frac{1}{2}\left(\zeta_{\text{odd}}\left(s, \cancel{D}\right) - \zeta_{\text{odd}}\left(s, -\cancel{D}\right)\right) = \frac{1}{2}\left(1 - e^{-i\pi s}\right)\eta(s, \cancel{D}),$$

where

$$\eta\left(s, \mathbb{D}\right) = \sum_{\lambda>0} \lambda^{-s} - \sum_{\lambda<0} (-\lambda)^{-s}.$$

therefore (L. Alvarez-Gaume, S. Della Pietra and G. Moore, 1984)

$$W_{\text{odd}} = \lim_{s \to 0} \mu^s \Gamma(s) \zeta_{\text{odd}}(s, \cancel{D}) = \frac{i\pi}{2} \eta(0, \cancel{D}) = \text{finite!}$$

Why do we expect it to be different from zero???

- When there is no boundary the spectrum is symmetric with respect to 0, since $\{ \not \! D, \gamma^5 \} = 0$.
- Boundary conditions break this property: $\Pi_{-}\gamma^{5} = \gamma^{5}\Pi_{+}$

The spectral function $\eta(s, \cancel{D})$ exhibits the following integral representation:

$$\eta(s, \cancel{D}) = \frac{2}{\Gamma(\frac{s+1}{2})} \int_0^\infty \tau^s \operatorname{Tr}\left(\cancel{D} e^{-\tau^2 \cancel{D}^2}\right)$$

Let us consider the variation of the gauge field $A_{\mu}(x) \longrightarrow A_{\mu}(x) + \delta A_{\mu}(x)$:

$$\delta\eta(s, \cancel{D}) = \frac{2}{\Gamma\left(\frac{s+1}{2}\right)} \int_0^\infty d\tau \, \tau^s \frac{d}{d\tau} \operatorname{Tr} \underbrace{\left(\delta \cancel{D}\right)}_{-\gamma^\mu \delta A_\mu} \tau e^{-\tau^2 \cancel{D}^2}.$$

At the physical limit s = 0

$$\delta\eta(0, D) = -\frac{2}{\sqrt{\pi}} \lim_{t \to +0} \operatorname{Tr}\left(\delta D\right) \sqrt{t}e^{-tD^2}$$

For an arbitrary matrix-valued function Q the following asymptotic expansion holds at $t \longrightarrow +0$:

$$\operatorname{Tr} Q e^{-t \not \! D^2} \simeq \sum_{k=0}^{\infty} t^{\frac{k-4}{2}} a_k \left(Q, \not \! D^2 \right)$$

The relevant heat kernel coefficients were studied by V. N. Marachevsky and D. V. Vassilevich in Nucl. Phys. B677, 535 (2004)

In our case a_0 , a_1 and a_2 vanish, therefore

$$\delta\eta(0, \not D) = -\frac{2}{\sqrt{\pi}} a_3 \left(\delta \not D, \not D^2\right)$$
$$= \left(-\frac{1}{4\pi^2}\right) \sum_{\alpha} \int_{\partial \mathcal{M}_{\alpha}} d^3 x \sqrt{h} \,\epsilon_{\alpha} \,\varepsilon^{nabc} \,\left(\delta A_a\right) \partial_b A_c$$

The variation of the parity-odd contribution to the one-loop effective <u>action reads</u>:

$$\delta W_{\text{odd}} = \left(-\frac{\mathrm{i}}{8\pi}\right) \sum_{\alpha} \int_{\partial \mathcal{M}_{\alpha}} d^3x \sqrt{h} \,\epsilon_{\alpha} \,\varepsilon^{nabc} \,\left(\delta A_a\right) \partial_b A_c.$$

In terms of the induced current the answer reads:

$$\mathcal{J}_{\text{odd}}^{a}(x) \equiv \frac{1}{\sqrt{h}} \frac{\delta W_{\text{odd}}}{\delta A_{a}(x)} = -\frac{\mathrm{i}}{8\pi} \epsilon_{\alpha}(x) \varepsilon^{nabc} \partial_{b} A_{c} = -\frac{\mathrm{i}}{16\pi} \epsilon_{\alpha}(x) \varepsilon^{nabc} F_{bc}$$

If the gauge potential A is defined globally on \mathcal{M} , we can recover W_{odd}

$$W_{\text{odd}} = \frac{1}{4} \sum_{\alpha} \epsilon_{\alpha} \left(-\frac{i}{4\pi} \int_{\partial \mathcal{M}_{\alpha}} \sqrt{h} \varepsilon^{nabc} A_{a} \partial_{b} A_{c} \right)$$

Comment on the gauge invariance of the answer.

Let us rewrite the answer in terms of the differential forms. We assume that

$$A = A_{\mu} dx^{\mu} \in D^{1} (\mathcal{M} \cup \partial \mathcal{M}).$$

Then the answer reads:

$$W_{\mathrm{odd}} = \mathrm{i} \sum_{\alpha} \mathrm{CS}_{\alpha} \left[k_{\alpha}, A \right],$$

$$\mathrm{CS}_{\alpha} \left[k_{\alpha}, A \right] = \frac{k_{\alpha}}{4\pi} \int_{\partial \mathcal{M}_{\alpha}} A \wedge dA, \quad k_{\alpha} = \varepsilon_{\alpha} \cdot \frac{1}{4}.$$

Each contribution is invariant upon the gauge transformation:

$$A \longrightarrow A - iU^{-1}dU, \quad \forall U \in C^{\infty}(\mathcal{M} \cup \partial \mathcal{M}), \quad |U| = 1.$$

Indeed

$$d(U^{-1}dU) = 0 \Rightarrow dA \longrightarrow dA,$$

$$A \wedge dA \rightarrow A \wedge dA - iU^{-1}dU \wedge dA = A \wedge dA - id\left(U^{-1}dU \wedge A\right)$$

$$\int_{\partial \mathcal{M}_{\alpha}} A \wedge dA \rightarrow \int_{\partial \mathcal{M}_{\alpha}} A \wedge dA - i\underbrace{\int_{\partial \mathcal{M}_{\alpha}} d\left(U^{-1}dU \wedge A\right)}_{0} = \int_{\partial \mathcal{M}_{\alpha}} A \wedge dA.$$

Comment on the classical symmetry.

Let us consider the transformations which leave invariant the classical e.o.m.

$$\begin{cases} i\gamma^{\mu} \left(\frac{\partial}{\partial x^{\mu}} + iA_{\mu}(x) \right) \psi = 0 \\ \frac{1}{2} \left(1 - i\epsilon_{\alpha} \gamma^{5} \gamma^{n} \right) \psi \Big|_{\partial \mathcal{M}} = 0 \end{cases}, \quad \epsilon_{\alpha} \in \{+1, -1\}.$$

The transformation

$$\begin{cases} \psi(x) \longrightarrow \psi(-x) \\ A_{\mu}(x) \longrightarrow -A_{\mu}(-x) \end{cases}$$

is a bad candidate: if $x \in \mathcal{M}$ there is no guarantee that $-x \in \mathcal{M}$.

The correct classical symmetry in a presence of the boundary is

$$\begin{cases} \psi(x) \longrightarrow \gamma^5 \psi(x) \\ \epsilon_{\alpha} \longrightarrow -\epsilon_{\alpha} \end{cases}.$$

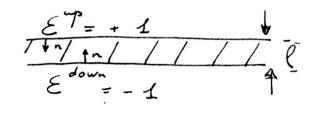
This transformation inverts the nonzero spectrum of the Dirac operator.

Comparison: 3D v.s. 4D results

4D case:
$$|k| = \frac{1}{4}$$

3D case: $|k| = \frac{1}{2}$

3D case:
$$|k| = \frac{1}{2}$$



Why is it natural?

Let us consider
$$\mathcal{M} = \mathbb{R}^3 \times [0; l]$$
 at $l \to 0$.

$$\frac{\mathcal{E}^3 = +1}{\sqrt{\ln / \ln / \ln / \ln }}$$

$$\frac{\mathcal{E}^3 = +1}{\sqrt{\ln / \ln / \ln / \ln }}$$

$$\frac{\mathcal{E}^3 = +1}{\sqrt{\ln / \ln / \ln / \ln }}$$

$$\frac{\mathcal{E}^3 = +1}{\sqrt{\ln / \ln / \ln / \ln }}$$

at
$$\epsilon^{\text{up}} = -\epsilon^{\text{down}}$$
 $\text{CS}[1/4, A] - \text{CS}[-1/4, A] = \text{CS}[1/2, A] \Rightarrow \text{3D-result},$ at $\epsilon^{\text{up}} = +\epsilon^{\text{down}}$ $\text{CS}[1/4, A] - \text{CS}[+1/4, A] = 0 \Rightarrow \text{nothing}$

Let us take a look at the spectrums of massless D in both cases at A = 0

- at $\epsilon^{\text{up}}=-\epsilon^{\text{down}}$ we obtain $\lambda^2(p,k_{||})=k_{||}^2+m_p^2$, $m_p^2=\frac{\pi p^2}{l^2}$, $p\in\mathbb{Z}$. At $l \to 0$ massless modes with p = 0 survive \longrightarrow massless 3D spectrum.
- at $\epsilon^{\text{up}} = +\epsilon^{\text{down}}$ we obtain $\lambda^2(p, k_{||}) = k_{||}^2 + m_p^2$, $m_p^2 = \frac{\pi \left(p + \frac{1}{2}\right)^2}{n^2}$, $p \in \mathbb{Z}$. At $l \to 0$ all eigenstates become infinitely massive.

Gravitational contribution: the 3D case.

What about the gravitational contribution to the parity anomaly?

• The answer is "yes", it is different from zero.

$$W_{\text{odd}} = -\frac{\mathrm{i}k}{4\pi} \int d^3x \sqrt{g} \epsilon^{\mu\nu\rho} \left(\Gamma^{\lambda}_{\mu\kappa} \partial_{\nu} \Gamma^{\kappa}_{\rho\lambda} + \frac{2}{3} \Gamma^{\lambda}_{\mu\kappa} \Gamma^{\kappa}_{\nu\sigma} \Gamma^{\sigma}_{\rho\lambda} \right) .$$

• There have been contradicting results in the literature regarding the coefficient k in front of Chern-Simons term.

$$k = \frac{1}{48}$$
, (Goni, Valle -1986; Vuorio -1986; van der Bij - 1986) $k = \frac{1}{16}$, (Ojima -1989)

Gravitational contribution to the 4D parity-anomaly.

We are dealing with the Euclidean 4D manifold \mathcal{M} with a boundary $\partial \mathcal{M}$

The Dirac operator is the usual one with the bag boundary conditions:

$$\begin{cases}
\mathcal{D} = i\gamma^{\mu} (\partial_{\mu} + \omega_{\mu}) \\
\frac{1}{2} (1 - i\epsilon_{\alpha} \gamma^{5} \gamma^{n}) \psi \Big|_{\partial \mathcal{M}} = 0
\end{cases}, \quad \epsilon_{\alpha} \in \{+1, -1\}.$$

Upon the zeta-function regularization the parity anomaly reads:

$$W_{\text{odd}} = \frac{i\pi}{2}\eta(0, \cancel{D}),$$
 where $\eta\left(s, \cancel{D}\right) = \sum_{\lambda>0} \lambda^{-s} - \sum_{\lambda<0} (-\lambda)^{-s}.$

Using again the integral representation:

$$\eta(s, \cancel{D}) = \frac{2}{\Gamma(\frac{s+1}{2})} \int_0^\infty \tau^s \operatorname{Tr}\left(\cancel{D} e^{-\tau^2 \cancel{D}^2}\right)$$

Let us consider the variation of the vierbeins $e_{\mu a} \longrightarrow e_{\mu a} + \delta e_{\mu a}$:

$$\delta\eta(s, \cancel{D}) = \frac{2}{\Gamma\left(\frac{s+1}{2}\right)} \int_0^\infty d\tau \, \tau^s \frac{d}{d\tau} \operatorname{Tr}(\delta \cancel{D}) \tau e^{-\tau^2 \cancel{D}^2},$$

$$\delta \cancel{D} = i\gamma^\mu \delta\omega_\mu + i\left(\delta e_a^\mu\right) \gamma^a \nabla_\mu - \text{1-st order diff. operator!}$$

At the physical limit s = 0

$$\delta\eta(0, D) = -\frac{2}{\sqrt{\pi}} \lim_{t \to +0} \operatorname{Tr}\left(\delta D\right) \sqrt{t}e^{-tD^2}$$

For the first order diff op. $Q=Q_1^{\mu}\partial_{\mu}+Q_0$ the asymptotic expansion at $t\longrightarrow +0$ has a different structure:

Tr
$$Q e^{-t \cancel{D}^2} \simeq \sum_{k=-1}^{\infty} t^{\frac{k-4}{2}} a_k \left(Q, \cancel{D}^2 \right)$$

There is a trick which allows to compute $a_k(Q, \not \!\! D^2)$ using the known expressions for $a_{k+2}(\tilde Q, \mathcal L)$, where $\mathcal L$ is a generic Laplace-type operator and $\tilde Q$ is a matrix valued function, see JHEP 1803 (2018) 072 by M.K. and D.Vassilevich.

In our case a_{-1} , a_0 , a_1 and a_2 vanish, therefore

$$\delta W_{\text{odd}} = -i\sqrt{\pi}a_{3}(\delta D, D^{2}) = \int_{\partial \mathcal{M}} d^{3}x \sqrt{h} \,\varepsilon_{\alpha} \left\{ -\frac{i}{384\pi} (\delta g_{jq}) \tilde{R}_{sp}^{qk} \epsilon^{njsp} + \frac{i}{256\pi} \left((\delta g_{si})_{;n} K_{p:l}^{i} - (\delta g_{si}) \left(K_{l}^{i} K_{p:r}^{r} + K_{p}^{r} K_{l:r}^{i} + K^{ri} K_{rp:l} \right) \right) \epsilon^{nspl}$$

Gravitational contribution: the 4D the answer.

The solution of the variational equation reads:

$$W^{\text{odd}} = -\frac{\mathrm{i}}{4\pi} \frac{1}{96} \int_{\partial \mathcal{M}} d^3x \sqrt{h} \varepsilon_{\alpha} \left[\left(\widetilde{\Gamma}_{qi}^r \partial_j \widetilde{\Gamma}_{rk}^q + \frac{2}{3} \widetilde{\Gamma}_{qi}^r \widetilde{\Gamma}_{pj}^q \widetilde{\Gamma}_{rk}^p \right) \epsilon^{nijk} + \frac{3}{2} K_{si} K_{p:l}^i \epsilon^{nspl} \right]$$

• This answer is invariant upon the local Weyl transformations:

$$g_{\mu\nu} \longrightarrow e^{2\phi} g_{\mu\nu}$$

- The coefficient $\frac{1}{96}$ in from of the Chern-Simons term is exactly twice smaller than the corresponding coefficient in the 3D case.
- It has no relation to the (bulk) Pontryagin type topological density, regardless of the choice of the sign factors ϵ_{α} .

$$P = \frac{1}{4} \int_{\mathcal{M}} d^4x \sqrt{g} \, \epsilon^{\mu\nu\alpha\beta} R^{\sigma}_{\tau\mu\nu} R^{\tau}_{\sigma\alpha\beta}$$

$$= -\int_{\partial\mathcal{M}} d^3x \sqrt{h} \left[\left(\tilde{\Gamma}^m_{il} \partial_j \Gamma^l_{km} + \frac{2}{3} \tilde{\Gamma}^l_{im} \tilde{\Gamma}^m_{jp} \tilde{\Gamma}^p_{kl} \right) \epsilon^{nijk} - 2K_{il} K^l_{k:j} \epsilon^{nijk} \right]$$

Summary.

- We considered the massless QED.
- ullet If one traps fermions inside the 4D manifold with a boundary, the one loop radiative corrections induce the Chern-Simons term on the boundary.
- This Chern-Simons term comes out from the spectral asymmetry of the Dirac operator due to the boundary conditions. Presence of such an asymmetry represents the parity anomaly.
- The level of this induced Chern-Simons term is exactly twice smaller than in the 3D case.
- Apart from that the P-odd radiative corrections induce the gravitational Chern-Simons term. The overall coefficient is again twice smaller than in the 3D case. The main novelty in the 4D setup is a presence of the very specific contribution, which depends on the extrinsic curvature.