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Parity anomaly in 3D

• Niemi, Semenoff - Phys. Rev. Lett. 51, 2077 (1983)

Redlich - Phys. Rev. Lett. 52, 18 (1984)

QED of massless fermions in 3D.

• At the classical level the massless fermionic field ψ(x) satisfies:(
/D[A]ψ

)
(x) = 0, /D[A] = iγi

(
∂

∂xi
+ iAi(x)

)

• This e.o.m. is invariant upon the parity transformation:

ψ(x) −→ ψ(−x)
Ai −→ −Ai(−x)

}
⇒ /D[A]ψ(x) −→ −

(
/D[A]ψ

)
(−x) = 0

3



Parity anomaly in 3D

• Quantization:∫
Dψ̄Dψ e−

∫
d3x ψ̄ /D[A]ψ = det

(
/D[A]

)
= e−W [A]

W [A] = − log det /D − the one loop effective action

• The one-loop radiative correction W [A] breaks the parity

symmetry Ai(x) −→ −Ai(−x) due to the Chern-Simons term!

W [A] = ±
i

8π

∫
d3x Ai∂jAkε

ijk + parity-even terms
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Parity anomaly in 3D

• Let us track the origin of this anomaly.

e−W [A] = det
(
/D[A]

)
=

∏
λ∈Spec( /D[A])

λ

• The parity transformation reflects the spectrum of the Dirac
operator:(

/D[A]ψ
)

(x) = λψ(x) −→
(
− /D[A]ψ

)
(−x) = λψ(−x)

• Parity anomaly expresses a spectral asymmetry of the Dirac
operator:

Wodd = −
1

2

(
log det

(
/D[A]

)
− log det

(
− /D[A]

))
6= 0
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Confined fermions in 4D: general setup

We are dealing with the

Euclidean 4D manifold

M with a boundary ∂M

The Dirac operator is the

usual one

/D = iγµ (∇µ + iAµ)

∇µ = ∂µ + ωµ

Boundary conditions must satisfy:

• /D
† = /D

•
(
ψ̄γµψ

)
nµ
∣∣∣
∂M

= 0
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Confined fermions in 4D: the boundary conditions

We exploit the (Eu-
clidean version of) the
MIT bag boundary con-
ditions

For each component of
the boundary ∂Mα we
define the projectors

Π± =
1

2

(
1± iεαγ

5γn
)
, εα ∈ {−1,+1}

and impose the boundary conditions

Π−ψ
∣∣∣
∂M

= 0

These boundary conditions guarantee that:

• /D
† = /D

•
(
ψ̄γµψ

)
nµ
∣∣∣
∂M

= 0
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Parity anomaly in 4D: the definition

The parity anomaly can be defined in arbitrary dimension via

Wodd = −
1

2

(
log det

(
/D[A]

)
− log det

(
− /D[A]

))
however this expression does not make any sense, unless one in-

troduces the regularisation.

ζ-function regularisation of the fermionic determinant:

W
[
/D
]
≡ − log det

(
/D[A]

)
−→ µsΓ(s)ζ(s, /D) ≡Ws[ /D], s→ 0

where the zeta function is defined in the following way:

ζ(s, /D) =
∑
λ>0

λ−s + e−iπs ∑
λ<0

(−λ)−s
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Parity anomaly in 4D: the definition

We are interested in the parity-odd contribution

ζodd

(
s, /D

)
≡

1

2

(
ζodd

(
s, /D

)
− ζodd

(
s,− /D

))
=

1

2

(
1− e−iπs

)
η(s, /D),

where

η
(
s, /D

)
=

∑
λ>0

λ−s −
∑
λ<0

(−λ)−s.

therefore (L. Alvarez-Gaume, S. Della Pietra and G.Moore, 1984 )

Wodd = lim
s→0

µsΓ(s)ζodd(s, /D) =
iπ

2
η(0, /D) = finite!

Why do we expect it to be different from zero???

• When there is no boundary the spectrum is symmetric with
respect to 0, since

{
/D, γ5

}
= 0.

• Boundary conditions break this property: Π−γ5 = γ5Π+
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Parity anomaly in 4D: the computation.

The spectral function η(s, /D) exhibits the following integral repre-

sentation:

η(s, /D) =
2

Γ
(
s+1

2

) ∫ ∞
0

τsTr
(
/De−τ

2 /D
2
)

Let us consider the variation of the gauge field

Aµ(x) −→ Aµ(x) + δAµ(x):

δη(s, /D) =
2

Γ
(
s+1

2

) ∫ ∞
0

dτ τs
d

dτ
Tr

(
δ /D

)
︸ ︷︷ ︸
−γµδAµ

τe−τ
2 /D

2
.

At the physical limit s = 0

δη(0, /D) = −
2
√
π

lim
t−→+0

Tr
(
δ /D

)√
te−t /D

2
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Parity anomaly in 4D: the computation.

For an arbitrary matrix-valued function Q the following asymptotic

expansion holds at t −→ +0:

Tr Qe−t /D
2
'
∞∑
k=0

t
k−4

2 ak
(
Q, /D

2
)

The relevant heat kernel coefficients were studied by V. N. Marachevsky

and D. V. Vassilevich in Nucl. Phys. B677, 535 (2004)

In our case a0, a1 and a2 vanish, therefore

δη(0, /D) = −
2
√
π
a3

(
δ /D, /D

2
)

=
(
−

1

4π2

)∑
α

∫
∂Mα

d3x
√
h εα ε

nabc (δAa) ∂bAc
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Parity anomaly in 4D: the computation.

The variation of the parity-odd contribution to the one-loop ef-

fective action reads:

δWodd =
(
−

i

8π

)∑
α

∫
∂Mα

d3x
√
h εα ε

nabc (δAa) ∂bAc.

In terms of the induced current the answer reads:

J aodd(x) ≡
1√
h

δWodd

δAa(x)
= −

i

8π
εα(x)εnabc∂bAc = −

i

16π
εα(x)εnabcFbc

If the gauge potential A is defined globally on M, we can recover

Wodd

Wodd =
1

4

∑
α
εα

(
−

i

4π

∫
∂Mα

√
hεnabcAa∂bAc

)
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Comment on the gauge invariance of the answer.

Let us rewrite the answer in terms of the differential forms. We
assume that

A = Aµ dx
µ ∈ D1 (M∪ ∂M) .

Then the answer reads:

Wodd = i
∑
α

CSα [kα, A] ,

CSα [kα, A] =
kα

4π

∫
∂Mα

A ∧ dA, kα = εα ·
1

4
.

Each contribution is invariant upon the gauge transformation:

A −→ A− iU−1dU, ∀U ∈ C∞(M∪ ∂M), |U | = 1.
Indeed

d(U−1dU) = 0 ⇒ dA −→ dA,

A ∧ dA → A ∧ dA− iU−1dU ∧ dA = A ∧ dA− id
(
U−1dU ∧A

)∫
∂Mα

A ∧ dA →
∫
∂Mα

A ∧ dA− i

∫
∂Mα

d
(
U−1dU ∧A

)
︸ ︷︷ ︸

0

=

∫
∂Mα

A ∧ dA.
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Comment on the classical symmetry.

Let us consider the transformations which leave invariant the clas-

sical e.o.m. iγµ
(
∂
∂xµ + iAµ(x)

)
ψ = 0

1
2

(
1− iεαγ5γn

)
ψ
∣∣∣
∂M

= 0
, εα ∈ {+1,−1} .

The transformation {
ψ(x) −→ ψ(−x)

Aµ(x) −→ −Aµ(−x)

is a bad candidate: if x ∈M there is no guarantee that −x ∈M.

The correct classical symmetry in a presence of the boundary is{
ψ(x) −→ γ5ψ(x)

εα −→ −εα
.

This transformation inverts the nonzero spectrum of the Dirac

operator.
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Comparison: 3D v.s. 4D results

4D case: |k| =
1

4

3D case: |k| =
1

2
Why is it natural?

Let us consider M = R3 × [0; l] at l→ 0.

at εup = −εdown CS[1/4, A]−CS[−1/4, A] = CS[1/2, A]⇒ 3D-result,

at εup = +εdown CS[1/4, A]−CS[+1/4, A] = 0⇒ nothing

Let us take a look at the spectrums of massless /D in both cases
at A = 0

• at εup = −εdown we obtain λ2(p, k||) = k2
||+m2

p, m2
p = πp2

l2
, p ∈ Z.

At l → 0 massless modes with p = 0 survive −→ massless 3D
spectrum.

• at εup = +εdown we obtain λ2(p, k||) = k2
||+m2

p, m2
p =

π
(
p+1

2

)2

l2
,

p ∈ Z. At l→ 0 all eigenstates become infinitely massive.
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Gravitational contribution: the 3D case.

• What about the gravitational contribution to the parity anomaly?

/D = iγi∇i, ∇i = ∂i + ωi
Wodd = −

(
log det

(
/D
)
− log det

(
− /D

))
6= 0?

• The answer is “yes”, it is different from zero.

Wodd = −
ik

4π

∫
d3x
√
gεµνρ

(
Γλµκ∂νΓκρλ + 2

3ΓλµκΓκνσΓσρλ
)
.

• There have been contradicting results in the literature regard-
ing the coefficient k in front of Chern-Simons term.

k =
1

48
, (Goni, Valle -1986; Vuorio -1986; van der Bij - 1986)

k =
1

16
, (Ojima -1989)
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Gravitational contribution to the 4D parity-anomaly.

We are dealing with the

Euclidean 4D manifold

M with a boundary ∂M

The Dirac operator is the

usual one with the bag

boundary conditions:

{
/D = iγµ (∂µ + ωµ)

1
2

(
1− iεαγ5γn

)
ψ
∣∣∣
∂M

= 0
, εα ∈ {+1,−1} .

Upon the zeta-function regularization the parity anomaly reads:

Wodd =
iπ

2
η(0, /D),

where η
(
s, /D

)
=

∑
λ>0

λ−s −
∑
λ<0

(−λ)−s.
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Parity anomaly in 4D: the computation.

Using again the integral representation:

η(s, /D) =
2

Γ
(
s+1

2

) ∫ ∞
0

τsTr
(
/De−τ

2 /D
2
)

Let us consider the variation of the vierbeins

eµa −→ eµa + δeµa:

δη(s, /D) =
2

Γ
(
s+1

2

) ∫ ∞
0

dτ τs
d

dτ
Tr (δ /D)τe−τ

2 /D
2
,

δ /D = iγµδωµ + i (δeµa) γa∇µ − 1-st order diff. operator!

At the physical limit s = 0

δη(0, /D) = −
2
√
π

lim
t−→+0

Tr
(
δ /D

)√
te−t /D

2
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Parity anomaly in 4D: the computation.

For the first order diff op. Q = Q
µ
1∂µ+Q0 the asymptotic expansion

at t −→ +0 has a different structure:

Tr Qe−t /D
2
'

∞∑
k=−1

t
k−4

2 ak
(
Q, /D

2
)

There is a trick which allows to compute ak(Q, /D2) using the
known expressions for ak+2(Q̃,L), where L is a generic Laplace-
type operator and Q̃ is a matrix valued function, see JHEP 1803
(2018) 072 by M.K. and D.Vassilevich.

In our case a−1, a0, a1 and a2 vanish, therefore

δWodd = −i
√
πa3(δ /D, /D2) =

∫
∂M

d3x
√
h εα

{
−

i

384π
(δgjq)R̃

qk
sp :kε

njsp

+
i

256π

(
(δgsi);nK

i
p:l − (δgsi)

(
Ki
lK

r
p:r +Kr

pK
i
l:r +KriKrp:l

))
εnspl

}
.
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Gravitational contribution: the 4D the answer.

The solution of the variational equation reads:

Wodd = −
i

4π

1

96

∫
∂M

d3x
√
hεα

[(
Γ̃rqi∂jΓ̃

q
rk + 2

3Γ̃rqiΓ̃
q
pjΓ̃

p
rk

)
εnijk+3

2KsiK
i
p:l ε

nspl
]

• This answer is invariant upon the local Weyl transformations:

gµν −→ e2φgµν

• The coefficient 1
96 in from of the Chern-Simons term is exactly

twice smaller than the corresponding coefficient in the 3D

case.

• It has no relation to the (bulk) Pontryagin type topological

density, regardless of the choice of the sign factors εα.

P = 1
4

∫
M
d4x
√
g εµναβRσ τµνR

τ
σαβ

= −
∫
∂M

d3x
√
h
[(

Γ̃mil ∂jΓ
l
km + 2

3Γ̃limΓ̃mjpΓ̃
p
kl

)
εnijk−2KilK

l
k:jε

nijk
]
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Summary.

• We considered the massless QED.

• If one traps fermions inside the 4D manifold with a boundary,
the one loop radiative corrections induce the Chern-Simons
term on the boundary.

• This Chern-Simons term comes out from the spectral asym-
metry of the Dirac operator due to the boundary conditions.
Presence of such an asymmetry represents the parity anomaly.

• The level of this induced Chern-Simons term is exactly twice
smaller than in the 3D case.

• Apart from that the P-odd radiative corrections induce the
gravitational Chern-Simons term. The overall coefficient is
again twice smaller than in the 3D case. The main novelty in
the 4D setup is a presence of the very specific contribution,
which depends on the extrinsic curvature.
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