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Parity anomaly in 3D

e Niemi, Semenoff - Phys. Rev. Lett. 51, 2077 (1983)
Redlich - Phys. Rev. Lett. 52, 18 (1984)

QED of massless fermions in 3D.

e At the classical level the massless fermionic field ¢ (x) satisfies:

(PUAI) @) =0, DLl =iy (o +14())

e [his e.o.m. is invariant upon the parity transformation:

GO0 = Pl — - (PAIw) () = 0
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Parity anomaly in 3D

e Quantization:

/D@ED@& e_def“ZlD[A]@b — det (ﬁ[A]) — o~ WI[A]
WI[A] = —logdet) — the one loop effective action

e The one-loop radiative correction W[A] breaks the parity
symmetry A;(x) — —A;(—x) due to the Chern-Simons term!

W[A] = iSL/d?’x A;9;ApeF 4+ parity-even terms
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Parity anomaly in 3D

e Let us track the origin of this anomaly.

e WIAl — get (lP[A]) — - 1_{%4]) A
pecC

e [ he parity transformation reflects the spectrum of the Dirac
operator:

(PIAIY) (2) = Mp(z) — (—PIAlY) (—z) = Mp(-2)

e Parity anomaly expresses a spectral asymmetry of the Dirac
operator:

Wodq = —% (log det (lD[A]) — log det (—lD[A])) - 0



Confined fermions in 4D: general setup

We are dealing with the
Euclidean 4D manifold
M with a boundary oM

The Dirac operator is the
usual one

D
Vi

IV (Vi +1A)

Boundary conditions must satisfy:
« Pl=1p

° @W"‘p) ”M‘aM =0



Confined fermions in 4D: the boundary conditions

We exploit the (Eu-
clidean version of) the
MIT bag boundary con-
ditions

For each component of
the boundary oM, we
define the projectors

1 :
Ny = 5 (1 + Ieo/yS'yn) , €a€{-1,41}

and impose the boundary conditions
ﬂ—¢|aM =0
These boundary conditions guarantee that:
« Pl=1p
T _
° (¢7 ’(b) ”“‘a/\/l 0




Parity anomaly in 4D: the definition

The parity anomaly can be defined in arbitrary dimension via

1
Wodd = 5 (Iog det (ZD[A]) — log det (—lb[A]))
however this expression does not make any sense, unless one in-

troduces the regularisation.

(-function regularisation of the fermionic determinant:

1174 [m} = _ log det (lD[A]) — s BT (8) (s, D) = W[D], s—0

where the zeta function is defined in the following way:

((s, D)= S A5+ N (=)

A>0 A<0



Parity anomaly in 4D: the definition

We are interested in the parity-odd contribution

Codd (8, ) = % (Codd (5, ) = Coad (s, — D)) = - (1— e ) n(s, 1),
where

2

1 (S,ZD) = > A= > (=%

A>0 A<0
therefore (L. Alvarez-Gaume, S. Della Pietra and G.Moore, 1984 )

Woad = lim u*T(s)Codd(s, P) = =n(0, Ip) = finite!
s—0 2

Why do we expect it to be different from zero7?7?7

e \When there is no boundary the spectrum is symmetric with
respect to 0O, since {12,75} = 0.

e Boundary conditions break this property: M_~° = ~°MN



Parity anomaly in 4D: the computation.

The spectral function n(s, Ip) exhibits the following integral repre-
sentation:

2 o0 2

n(s, D) = / 5T (ZDG_TQID )
m(5t) Jo

et us consider the variation of the gauge field

on(s, ) = - (32—|—21) /OOO dTTS%TI’ \(il?_)/ Te_TQlDQ.

—yHO A

At the physical limit s =0
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Parity anomaly in 4D: the computation.

For an arbitrary matrix-valued function @) the following asymptotic
expansion holds at ¢t — +40:

Tr Qe P’ = Y 774y (Q, 1)
k=0

The relevant heat kernel coefficients were studied by V. N. Marachevsky
and D. V. Vassilevich in Nucl. Phys. B677, 535 (2004)

In our case ag, a1 and ao vanish, therefore
2

577(OJD) — _\7&3 (CWDJDQ)

- ( 42 ) Z/éiv\/la d*z h € gnabe (0Aq) OpAc
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Parity anomaly in 4D: the computation.

The variation of the parity-odd contribution to the one-loop ef-
fective action reads:
i

Wy = (_87) 3 /a oy Pz Vheae™ (5Aa) 9yAc
Q o

In terms of the induced current the answer reads:

1 oW, ' '
a (Jj) — odd __ _Lea(x)gnabca A, = — !
odd b

nabc
— F
Vh §Aa(z) 87 167 cal@)e be

If the gauge potential A is defined globally on M, we can recover

WOdd = Z Z (g (_E 8/\/{@ \/EsnabcAaabAc)
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Comment on the gauge invariance of the answer.

Let us rewrite the answer in terms of the differential forms. We
assume that

A=A, ds* € DX (MUIM).

Then the answer reads:

Wodd = iz CSa [ka, 4],
87
CSq [ka, A] ko ANdA, k -
, p— _ , = £ .« —.
oL Ar JOMa “T % g

Each contribution is invariant upon the gauge transformation:

A— A—iU YdUu, vUeCc®MuUM), Ul =1.

Indeed
dUdU) = 0 = dA— dA,
ANdA — ANdA—IU'dUNdA=ANdA—id (U HdU A A)
/ ANdA —>/ A/\dA—i/ d(UdUANA) = ANdA.
oM., oM. JoM, | OM.

~"

0
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Comment on the classical symmetry.
et us consider the transformations which leave invariant the clas-
sical e.o.m.

iy (a% + iAM(az)) v =0
5 (1= iear®y") w‘aM =0

The transformation

ea € {+1,—1}.

{ p(x) — Pp(—x)
Au(z) — —Au(—x)

is a bad candidate: if x € M there is no guarantee that —x € M.

The correct classical symmetry in a presence of the boundary is

{ P(z) — ()

€ —7 — €

This transformation inverts the nonzero spectrum of the Dirac
operator.
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Comparison: 3D v.s. 4D results

1 ET= + 4 {
4D case: k| =Z T 77 777
1 Ao -
3D case: |k|=5 & 2ad 1
Why is it natural? cYL Ly
/_E"L/ . / ==
Let us consider M =R3 x [0;1] at Il — O. &dw‘i 4 / L
o +.£

at €UP = —¢dOWn  CS[1/4, A] — CS[—-1/4, A] = CS[1/2, 4] = 3D—result,
at  €YP = 4edOWn  CS[1/4, A] — CS[+1/4, A] = 0 = nothing

Let us take a look at the spectrums of massless P in both cases
at A=20

o at e'P = —edOWN \we obtain A\2(p, ki) = kﬁ+m L ms = ”p , p EZ.
At [ — 0 massless modes with p = 0 survive — massless 3D
spectrum.

2
m(p+3

e at ¢YP = 4¢9OWN e obtain )\Q(p,k ) = kﬁ—l—m , m2 = ( 122) ,

p € Z. At | — O all eigenstates become Infinitely massive.
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Gravitational contribution: the 3D case.

e \What about the gravitational contribution to the parity anomaly?
D = WV V=0 +w
Wodd = — (Iog det (lD) — log det (—lD)) #+ 07

e [ he answer is “yes’, it is different from zero.

Wodd = ——/d%\féwp( e N S e Z/\)

e [ here have been contradicting results in the literature regard-
ing the coefficient £ in front of Chern-Simons term.

1
kL = 18 (Goni, Valle -1986; Vuorio -1986; van der Bij - 1986)

1
k = —,  (Ojima -1989
T (OjJ )
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Gravitational contribution to the 4D parity-anomaly.

We are dealing with the
Euclidean 4D manifold
M with a boundary oM

The Dirac operator is the
usual one with the bag
boundary conditions:

D= iyt (a,u + W,u)
T

Upon the zeta-function regularization the parity anomaly reads:

Wodd = gn(O,lD),
where n (s,lD) =) A=) (=N

A>0 A<0
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Parity anomaly in 4D: the computation.

Using again the integral representation:

2 o0 2 142
n(s, ) = / °Tr (lDe_T p )
I— (S 1) O
2
Let us consider the variation of the vierbeins
elua, — elua _I— 56“61,:

. 2 00 s d _ 22
on(s, ) = I_<S‘|2'1)/O dr T ETI’ (6D)Te ;
o = iytow, +i(del)v*V, — 1-st order diff. operator!
At the physical limit s =0
2
(0, D) = —— lim Tr (MD) Vie th
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Parity anomaly in 4D: the computation.

For the first order diff op. Q) = Q‘lbaﬂ—l—Qo the asymptotic expansion
at t — 40 has a different structure:

Tr Qe_th ~ i tk_Télak (Q, lDQ)

k=—-1

There is a trick which allows to compute ak(Q,lDQ) using the
known expressions for ap4,(Q, L), where £ is a generic Laplace-
type operator and @ is a matrix valued function, see JHEP 1803
(2018) 072 by M.K. and D.Vassilevich.

In our case a_q, ap, a1 and ao vanish, therefore

Wodd = —ivmaz(6p, )=/Md3:1: hsa{ 284 (5g]q)R8p 1% ISP

+ 25|6 ((5951) ?”LKZ (5952) (Kl -t KTKZ r + KTZK?“ )) nspl
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Gravitational contribution: the 4D the answer.

The solution of the variational equation reads:

= — s - |
ppodd —— 432 ey [(rgiajrgk + %rgirgjrfk) IR 43K K €t

e [ his answer is invariant upon the local Weyl transformations:

Juv — €2¢9uv

e [ he coefficient % in from of the Chern-Simons term is exactly
twice smaller than the corresponding coefficient in the 3D
case.

e It has no relation to the (bulk) Pontryagin type topological
density, regardless of the choice of the sign factors ¢,.

p =1 /M d*z\/ge" PR LR

= /. Bav/h [(FRo;r,, + 20, T ik 2K K emil

20




Summary.

We considered the massless QED.

If one traps fermions inside the 4D manifold with a boundary,
the one |loop radiative corrections induce the Chern-Simons
term on the boundary.

This Chern-Simons term comes out from the spectral asym-
metry of the Dirac operator due to the boundary conditions.
Presence of such an asymmetry represents the parity anomaly.

The level of this induced Chern-Simons term is exactly twice
smaller than in the 3D case.

Apart from that the P-odd radiative corrections induce the
gravitational Chern-Simons term. The overall coefficient is
again twice smaller than in the 3D case. The main novelty in
the 4D setup is a presence of the very specific contribution,
which depends on the extrinsic curvature.
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