Nikolay Achasov, Alexey Kiselev

Sobolev Institute for Mathematics, Novosibirsk

Light scalar mesons and the data on two-kaon correlation functions

N.N. Achasov and A.V. Kiselev, Phys. Rev. **D 97**, 036015 (2018), "The $a_0(980)$ physics in semileptonic D^0 and D^+ decays", arXiv:1805.10145

A brief reminder on light scalar mesons

- Nonet of light scalar mesons: $a_0(980), f_0(980), \sigma(600), \kappa(800)$
- Were discovered ~ 50 years ago and became hard problem for the naive quark model from the outset
- Elucidation of their nature can shed light on confinement and the chiral symmetry realization way in the low energy region
 - Perturbation theory and sum rules don't work
- The $\sigma(600)$, $a_0(980)$, and $f_0(980)$ are studied in $\phi \to S\gamma$ decays, $\pi\pi$ scattering, $\gamma\gamma \to \pi\pi$, $\eta\pi^0$ and other processes

Light scalars in $\gamma\gamma \to \eta\pi^0$ and $\phi \to \eta\pi^0\gamma$ decay

2015: N.N. Achasov, A.V. Kiselev, and G.N. Shestakov, simultaneous description the Belle data on $\gamma\gamma \to \eta\pi^0$ and the KLOE data on $\phi \to \eta\pi^0\gamma$, signal reactions are $\gamma\gamma \to a_0^0(980) + a_0'^0 \to \eta\pi^0$ and $\phi \to [a_0^0(980) + a_0'^0]\gamma \to \eta\pi^0\gamma$. Consideration of $\gamma^*(Q^2)\gamma \to \eta\pi^0$ reaction.

Results of the fit-2016: a) the Belle data on $\gamma\gamma \to \eta\pi^0$ cross-section; b) the KLOE data on $\phi \to \eta\pi^0\gamma$ decay, cross points are omitted in fitting, m is the invariant $\eta\pi^0$ mass.

Two-particle correlation

$$C(Q) = \frac{A(Q)}{B(Q)}.$$

Here A(Q) represents the distribution of the invariant relative momentum $Q = \sqrt{-q^{\mu}q_{\mu}}$, $q^{\mu} = p_1^{\mu} - p_2^{\mu}$, for a pair of particles from the same event. B(Q) is a reference distribution of the pairs of particles taken from the different events.

$K_S^0 K^{\pm}$ correlation in Pb-Pb interactions

2017: ALICE Collaboration measured $K_S^0 K^{\pm}$ correlations in Pb-Pb interactions.

The approach is based on R. Lednicky and V. L. Lyuboshits, Yad. Fiz. 35, 1316 (1982). The correlation $C(k^*)$ is

$$C(k^*) = 1 + \frac{\lambda}{2} \left(\frac{1}{2} \left| \frac{f(k^*)}{R} \right|^2 + 2 \frac{Ref(k^*)}{\sqrt{\pi}R} F_1(2k^*R) - \frac{Imf(k^*)}{R} F_2(2k^*R)\right), \tag{1}$$

where k^* is the kaon momentum in the kaon pair rest frame, $k_{\pi\eta}$ is the corresponding $\pi\eta$ momentum, R is the radius parameter from the spherical Gaussian source distribution, λ is the correlation strength, and

$$F_1(z) = \frac{e^{-z^2}}{z} \int_0^z e^{x^2} dx, \quad F_2(z) = \frac{1 - e^{-z^2}}{z}.$$

The scattering amplitude used by experimenters is

$$f(k^*) = \frac{\gamma_{a_0 \to K\bar{K}}}{m_{a_0}^2 - s - i(\gamma_{a_0 \to K\bar{K}}k^* + \gamma_{a_0 \to \pi\eta}k_{\pi\eta})}.$$
 (2)

We use

$$f(k^*) = \frac{2}{\sqrt{s}} \sum_{S,S'} \frac{g_{SK_S^0 K^+} G_{SS'}^{-1} g_{S'K_S^0 K^+}}{16\pi}.$$
 (3)

where $S, S' = a_0^+, a_0'^+$, and the constants $g_{SK_S^0K^+} = -g_{SK_L^0K^+} = g_{SK_L^0K^+}$. The matrix of the inverse propagators is

$$G_{SS'} \equiv G_{SS'}(m) = \begin{pmatrix} D_{a_0'}(m) & -\Pi_{a_0'a_0}(m) \\ -\Pi_{a_0'a_0}(m) & D_{a_0}(m) \end{pmatrix}, \tag{4}$$

 $K_S^0K^+$ correlation: the solid line represents our fit, and the points are ALICE experimental data.

New data description

Recently BES Collaboration measured the decays $D^0 \to d\bar{u} e^+ \nu \to a_0^- e^+ \nu \to \pi^- \eta e^+ \nu$ and $D^+ \to d\bar{d} e^+ \nu \to a_0^0 e^+ \nu \to \pi^0 \eta e^+ \nu$ for the first time.

In arXiv:1805.10145 we present a simultaneous description of $\gamma\gamma \to \eta\pi^0$, $\phi \to \eta\pi^0\gamma$ and $K_S^0K^+$ correlation in agreement with BESIII current results. $\lambda=1,\ a_0(980)$ has no $q\bar{q}$ component at all $(g_{a_0}^{(0)}\gamma\gamma=0,\ g_{d\bar{u}a_0}^-=g_{d\bar{d}a_0}^0=0)$.

Properties of the resonances and the description quality

m_{a_0} , MeV	999.5	$m_{a_0'}, \mathrm{MeV}$	1439.4
$g_{a_0^0K^+K^-}, \text{GeV}$	3.50	$g_{a_0'^0K^+K^-}, \text{GeV}$	4.45
$g_{a_0\eta\pi},\mathrm{GeV}$	3.42	$g_{a_0'\eta\pi},\mathrm{GeV}$	-0.20
$g_{a_0\eta'\pi}, \text{GeV}$	-3.64	$g_{a'_{2}n'_{\pi}}, \text{GeV}$	0.41
$g_{a_0^0\gamma\gamma}^{(0)}$	0	$g_{a_0^{\prime 0}\gamma\gamma}^{(0)}, 10^{-3} \text{GeV}^{-1}$	-14.62
λ	1	R, fm	6.3
χ^2_{sp} / 24 points	25.3	χ^2_{corr} / 29 points	17.2
$\chi^2_{\gamma\gamma}$ / 36 points	10.9	$(\chi_{\gamma\gamma}^2 + \chi_{sp}^2 + \chi_{corr}^2)$ /n.d.f.	55.5/75

 $K_S^0K^+$ correlation: the solid line represents our fit, and the points are ALICE experimental data.